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CHAPTER 1

INTRODUCTION

Digital image processing has gained considerable importance due to its numerous applications
in the aerospace, biomedical, commercial television and video teleconferencing systems. The
availability of super-fast chips for digital data processing has made the hardware implementation
of the image processing algorithms feasible for satellite applications due to the reduction achieved
in weight, size and power consumption. A considerable amount of work done in the area of image

processing has focused on coding, bandwidth compression and pattern recognition.

In the area of image processing on board a satellite, the usual objectives are image
enhancement, efiicient encoding to reduce the transmission or storage capacity requirements and
pattern recognition for the purpose of extraction of certain feature poimé. In this work, we focus
on a different aspect of digital data processing. Here. we are concerned with the estimation of image
data using past statistics. Specifically, we are interested in an on-line prediction of the next few
frames of a video sequence using the available frames. The problem then is that of parameter
identificatior. of a time-varying system using a priori knowledge. For this purpose, we apply
estimation theory concepts and derive a fixed predictor as well as one that is adaptive, i.e., one
which predicts frames by analyzing that data which was received most recently. In the former, a
fixed prediction algorithm is used whereas in the latter it is based on the most recent data. The
specific application considered is that of a remotely piloted vehicle where a man-in-the-loop uses
images relayed by a spacecraft in orbit for remotely maneuvering the vehicle. The prediction of
the image data is expected to enhance the pilot’s ability to maneuver the vehicle by compensating
for the data which are either corrupted by channel noise or lost because of a temporary loss in the
communication link. Otherwise, the estimates of the next frames impart added knowledge about

the scene and the target movement. and the resulting smoothing effect is expected to aid

s.gnificantly in the piloting operation.




A brief descripticn of the cther areas of research is presented below for a contrast with our
objective. The area of image enhancement is concerned with restoring the quality of the pictures,
which mav be degraded because of a noisy satellite channel, or enhancing the contrast for a better
scene interpretation. The results of image enhancement work done at the Jet Propulsion
Laboratorv for improving the picture quality of the pictures of the Moon and Mars are well
known. Pattern recognition is another important area of research, and refers to extraction of
patterns or other information from images. Its applications are in the area of biomedical
engineering, automatic mapping of earth resources from satellite photographs. etc. Video
bandwidth compression is an area that has received a lot of attention and is concerned with the
problem of bandwidth constraint either for siorage or transmission. For instance, the bandwidth
available from a spacecraft for real-time transmission is severely limited due to the total weight.
equipment size and power constraints. This necessitates compressing of the image data into a much
smaller bandwidth, simultaneously minimizing any degradation in the received picture quality.
Bandwidth compression techniques seek to achieve this by removing the redundancy inherent in an
image, or a sequence of images, both in the space domain as well as the time domain so that the
image can be represented by a smaller bandwidth. A considerable amount of work in the image
processing area has focused on this probiem. Seyler [1] describes a coding technique to reduce the
channel capacity requirement. The applications of predictive coders and transform coders are well
known. The former exploit spatial and temporal redundancies in the data, and the latter transform
the image data into the frequency domain, and achieve compression by exploiting the fact that the
human eve is sensitive only to changes in the lower frequency coefficients. Hybrid techniques [2]
have also been widely applied since they use a combination of algorithms to achieve the best
compromise between implementation complexity and performance. Adaptive compression
techniques are impceriant due to their ability to monitor their performance and inject a feedback
term in their algorithm. to adapt themselves to changes in the scene statistics. This makes them
more robust than their nonadaptive counterparts. Ericsson 3] reports good results when applying

adaptive predictors rather than fixed prediciors fcr bandwidth reduction via interframe coding. A
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survey of adaptive image coding techniques is given in [4]. For applications involving feedback

control svstems and bandwidth compression systems, great improvements in performance have
been reported with the use of adaptive techniques. This was the motivation to apply this approach

for image data prediction.

As stated above. this work addresses a different problem. Here, the dynamic estimation
problem deals with the determination of image pixel intensities of a video frame based upon those
of the frames already received, i.e.. estimation of unknown, time-varying parameters using
measurable data. The motivation for this work is as follows: A teleoperator-based remotely
piloted spacecraft transmits video images obtained from the on-board cameras to a ground control
station for scene and target interpretations. A man-in-the loop (the pilot on the ground control
station) relies on the images transmitted from the spacecraft for maneuvering it near a target
spacecraft for surveillance. In the case of a disabled spacecraft, the aims are rendezvousing and
docking for the purpose of retrieval. In this application, knowledge of the next few frames of the
video sequence cou.d greatly enhance the pilot’s perception of the scene and target motion. and thus

aid significantly in the remote piloting operation.

An added motivation is due to the problem created by a temporary loss in the communication
link between the spacecraft and the ground control station. As shown in Figure 1, the spacecraft in
orbit modulates the digitized video signal onto a radio frequency (RF) carrier and transmits it to a
communication satellite such as NASA's Telecommunications and Data Relay Satellite (TDRS).
The TDRS receives the signal, ampiifies it, remodulates it onto another RF carrier and transmits it
to the ground control station. In a situation where the target spacecraft is spinning, the parent
spacecraft will have to spin up to the same rate to be able to dock with the target. A spinning
spacecralt would have to alternate between its antennas for transmission of the data as the relay
satellite moves out of the field of view (FOV) of one antenna and into that of the other. The FOV

of the satellite antennas is usually limited by the antenna size and weight constraints. It is

conceivabie that during a part of the rotation, the communication satellite may not be within the




Figure 1. Spacecrafi-to-earth station comimunication ».a a relay satell:te.
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A FOV of either antenna. This would result in a temporary loss in the communication link resulting
,
L) =
v . c . . 1
' in the loss of a few frames. A poor link performance (bit error rate of the channel) could alsc
.
J'"' . 1 . . .. . . F L
_.‘: potentially result in some loss of data, impairing the pilot's ability to maneuver the vehicle.
‘l "_-
e o . o
sy resulting in either a loss of the mission, the spacecraft. or both. In such cases. reconstruction of the
n n missing frames using the past statistics could avert a catastrophic failure. The problem then is not
"’ _:‘
N only filtering of the data based on the frames received, but also that of predicting the next few
) -~
[ »
N 3 - o . o :
ihy ::: frames. Even if there were no missing frames, image data prediction offers smoothing cf the daia
o
- which would considerably increase the pilot's perception of the scene.
2. -
'j- o For the sake of imagze data restoration, the simplest solution may appear to be a frame refresh
L
A . . . s .
b based upon the last frame received. This work seeks to exploit the statistical correlation between
e .
" the p:xels of adjacent frames of a video sequence for a more accurate prediction of the images.
SN
e Specifically, a fixed ancd an adaptive predictor are utilized. Underlyving both of these approaches is
4
- i the problem of parameter estimation of time-varying parameters. For solving the prediction
z; problem, we first represent the image sequence as a discrete-time linear state vector model. The
b ;. challenge presenied bty this approach of using fixed and adaptive frame predictions of a video
L
) sequence based Upon .he past frames received is in modeling the scene dynamics and representing
ip‘ ! the image processing rroblem as a state vector model. When the system model is completely
o T specified. standard parameter estimation techniques can be used for designing optimal predictors.
) i:
R .
) - - - - .
N In our case. however, the system model is not compietely specified. The problem is compounded by
L3 . . . . .
O the fact that the videc image sequence is characterized by time-varying parameters rather than
s T
- stat:ionary ones. We approach this problem in the fixed predictor case by exploiting the inherent
N : _ o , .
o s correiation of the adjacent pixels of a frame. and that of adjacent frames 10 derive the state vector
-@
P . model by assuming a fixed interframe and intraframe correlation. In the case of an adaptive
:. p ) ] . :
N predictor. we derive the mterirame correlation from the set of frames received and assume that in
~I
A% ;\ ) . . S . . . . .
Py L: the case of sicw dvramics. which is typically the case in spacecraft-to-spacecraft docking situation.
\ the same interframe correlation can be applied to the naxt set of frames. We intend 10 invesiigate
Ky
‘ L
Y ‘f: ' . : I's
AL if 1t s possibie t¢ obtain beiler results using tnese approaches than with simple frame relresh.
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Chapter 2 gives the formulation of the image processing problem.

A truly adaptive predictor would have to take into account and compensate for the relative
displacement between successive frames of a sequence. This is because the scene is actually
nonstationary as the camera is moving with the spacecraft and taking pictures of a target which
may also be in motion. Hence, to gain an added insight into the problem. we explore the application
of the pattern recognition theory for estimating object motion parameters based on a sequence of
images. Dynamic scene analysis is receiving increasing attention from researchers in image
processing and pattern recognition. Three-dimensional projection, optical flow and trajectory
determination are the common approaches for determining object motion from a video sequence. A
brief description of these is given below. followed by a descripticn of the approach that is used in

this work.

Three-dimensional projection techniques entail an inverse projection of the 2-dimensional (2-
D) image frame onto a 3-D space. This approach makes use of the fact that all motion is in fact 3-
D and consists of beth translational and rotational components. A frame is a 2-D representation of
the 3-D scene and may lead to ambiguity about the real scene since many different scenes could
produce the same 2-D image. In other to get a correct depth model. one must consider the third
dimension and estimate the translational and rotational moiion parameters from the sequence cf
2-D viceo frames. Roach and Aggarwal [5] describe such a technique for determining the
movement of the objects from a sequence of images. Another well-known technique is that of
optical flew. Optical low methods represent motion in the image plane as sampled, continuous
velocity fields. These are considered to be a powerful tool for dynamic scene analysis because they
centain important information about the depth. structure and motion of objects. However, the
techniques for determining optical flow are known to be computationally very ccmplex. One
approach for the computation of the optical flows is given by Jain in [6]. Another way of
recovering 3-D parameters is based on trajectory determination for certain key points in the images.

Trajectoryv-based methods rely on the recognition of the same set of feature points in two or more

=

el
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,\ 3
e successive frames, and then utilize the correspondence between them 10 extract motion information.
i P
¢ . . .
. ' Such methods have attracted a lot of attention because they are simpler to compute than optical
)
B3 fliow methods. Sethi and Jain [7] present an algorithm for determining trajectories of certain
1 l‘)
PN
il . . . .
jaj o feature points from a sequence of images and use it to extract knowledge about the third
"1y, -
Ve . .
. C dimens.on.
l‘ :.-
I It is recognized that some sort of movement compensation must be accomplished in order to
. g P p
e \- . . - - .
S make the frame recovery more meaningful. Since the camera is not stationary but moves with the
4 " Y g Y
e -
arent spacecraft as it approaches the target. the translation and the rotation of the target with
| - p P PP g g
o 3
: 3 o respect to the camera can be significant, and must be estimated and accounted for in our prediction
A — . . .
SR rocess. The accuracy of the prediction process is degraded by that portion of the picture area
SAERC p Y P P g y P P
\". ".9
which can be classified as being nonstationary. Movement-compensated interframe prediction
\
S offers a promising approach to improving the accuracy of prediction by estimating and
A P g app f g y P y g
L
o . , : . - .
Q . compensating for the nonstationary part of the image. In our specific application of target tracking,
. ﬂ we are not so concerned with determining the shape of the object as with its relative orientation 10
q
et .
u,')" e the parent spacecraft. This is because the target shape would almost always be known to us a
= o . . . . . . . . .
D riori. Shape determination has different applications such as in computerized tomography where a
o P P PP P grapny
P |

physician may be interested in determining the shape and location of a tumor in a patient. For this

E
™

N
$\: reason, we apply movement compensation algorithms to improving the accuracy of prediction
‘;, instead of the 3-D projection techniques, which usually involve solving of a complex set of
1%
ta; nonlinear equations. In Chapter 5, we describe one of the techniques reported in the literature that
:': o,
- we applied for the extraction cf motion data and show that it is possible 1o improve the accuracy of
5
e 0 prediction by compensating for motion.
. -~
@
.::;. - We demonstrate the perfermance cf the algerithms via a subjective evaluation of the
”
“
! ‘l" . . .
‘}} : reconstructed frames and also via some standard objective measures of performance such as mean-
1
" 2 square error. mean- absolute error and signal-to-noise ratio. These performance measures and the
:::: motivatlion 10 use those rather than a visuai evaluation alone are described in detail in Chapter 2.
W
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W

:,I'{ To demonstrate the performance of the algorithms, we use a set of 8 frames. The frames are from
e

117
B 4 . . . . .

‘ a video tape of a spacecraft-to-spacecraft docking simulation, and represent the kind of data a
i'."_ remote teleoperator may have to work with. A typical video tape would have a frame rate of 30
-'{\:

% -- . . . .
".'-'-»: frames per second. We deliberately selected frames which were not consecutive, but skipped over
(hh ™.

) several frames in between. This is done so as to create a situation which is much worse than what
YR
ion'Q. . .
1..:1: a teleoperator would normally encounter and thereby obtain very conservative results. These data
[}
sl
I , \ . N . L I
:'::E,:E are considered reievant because the main motivation for the work is to aid in remote piloting
X
"‘n.l .

operation. Each frame of the image data consists of 512 rows of picture elements (pixels) with 512

coow
1 pixels in each row. The data are digitized with 8 bits per pixel. which is equivalent to a
N
e
'::;'.': representation of the image pixel intensity on a scale of 0 to 255, with 255 representing the
ot

1 brightest intensity. The digitization results in a 512X512 array of integers. We use these digitized
-f:'.‘:-:f frames for evaluating the performance of a fixed predictor versus an adaptive predictor. The
N
»o"

-;.,}' digitized data are processed on a VAX 11/750. In order to better draw any conclusions from the
o
study. we increased the number of cases by 4 by considering 256X256 pixel subimages.
L] \J
Aoty Furthermore. in order to ease the computational burden imposed by the size of the matrices,
¥ .
e 0,
(: ‘.o especially the computation of matrix inverses, we process the images in 32X32 pixel subblocks. For
J’h"
) obtaining the full frame, all the subblocks are pasted together in the proper order.
‘;l‘.;.'l

-5 For a subjective evaluation of the frame estimates and comparison with the original frames,
.-!,'

W -.j we use the COMTAL Vision One/20 system. It is a complete image processing system consisting of

A

F’-:r a fully integrated LSI-11 processor. image processing electronics and application firmware for image
5

::—:':-j display. The system ailows digitization of images. as well as display of digitized data, i.e., analog-
S
t:':::- to-analog (A D) and digital-to-analog (D/A) conversion. The digitized frame data were provided
PRI

il A Ty . L . . .

o in the UNIX TAR (Tape Archive) format which is not compatible with the VMS operating system
o i . : .
A of the VAX 11/750 processor. In order to convert the raw binary data into real number matrices
4

W .

g;!'::) for processing on the VAX processor, we first arrange the raw data into block structured files
;‘..;; consisting of 512 byte biocks. Subsequently, we use a set of standard tape utilities and also some
[}
Al
’:.:a:. special programs. to reud the binary files and convert them into rezal number matrices for algorithm

e T

A W RPN 3 , ~ Vet 90,00 1,07, 80, .
O A R R e N e
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::!' processing. The frame estimates obtained via the algorithms are likewise converted into block-
f.t‘ u structured binary files and transported to the COMTAL machine for D/A conversion. Chapter 6
ot

El': o gives a discussion of the simulation results. We do the processing in software to investigate the
E‘:Eg L“\:“ feasibility of the approach. However, in practice, the processing would be done in hardware with
‘: 5 the use of high-speed adders and multipliers. Since this processing would be done at a ground
Y

:: ‘ control station instead of on board a spacecraft, we are not so constrained by the weight, power,
i: l";: and size of the processing equipment.

el ;2 The organization of the thesis is as follows. Chapter 2 presents a formulation of the image

> I\

processing problem and describes a set of objective performance criteria used for performance

evaluation of the approaches. Chapter 3 presents the fixed predictor approach. The prediction is

o
=5

s applied to both single and multiple steps of prediction using both a single frame and multiple
Y .
. T
i :,‘ “r frames. Performance of the algorithm is evaluated using the performance criteria outlined in
2
‘o Chapter 2. Chapter 4 presents the application of the adaptive predictor technique to the image
) P P P PP p p q g
K processing problem. We also describe the peculiarities of the image processing problem and the
: ) ,:: resulting mathematical complexity involving matrix manipulations. The results are presented fcr a
L)
L)
X suboptimal adaptive predictor. Chapter 5§ presents the approach used for displacement
o L
VO Y measurement between consecutive frames and show the effect on improving the accuracy of frame
) p g Yy
W
W . . . . . .
" Py estimates. Chapter 6 presents pictures of the frame estimates derived via the various approaches
S
o {8 . . . . .
ﬁ.ﬂ" along with the original pictures and discuss the results. Chapter 7 presents the conclusions of the
[
,;:; ? work. Based upon our findings, some areas for future research are suggested.
)
o,:'
b
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CHAPTER 2

IMAGE PROCESSING PROBLEM FORMULATION

2.1. Introduction

In this chapter, we give a mathematical representation of the image processing problem stated
in Chapter 1. For solving the prediction problem, we model the image processing problem as a
discrete-time linear state vector model. This model is used subsequently in Chapters 3 and 4 to
derive fixed and adaptive estimates of video frames. For modeling the image sequence., we
represent a sequence of video frames as a discrete-time nonstationary process with each individual
frame being represented as an N-dimensional vector, (k). Since the frames are 2-dimensional and
have N; rows of N, pixels each, as shown in Figure 2, therefore, f(k) can be considered to be a

column vector of (N;XN,) elements.

As explained in Chapter 1, in order to ease the computational complexity, we process 32Xx32
pixel blocks of the image instead of the entire 256X256 pixel subimages. Also. we take advantage
of the adjacent-pixel correlation, both within a frame and between successive frames, to define the
system matrices by representing f(k) as 2 32X32 matrix instead of a 1024x1 vector. Thus, we can
make use of matrix manipulation algorithms to derive the frame estimates. This statistical model
assumes that each 32X32 block of pixels represents a two-dimensional separable wide-sense
stationary process. In reality, however, the pixels of a block are dependent on the pixels in the
neighboring blocks. This is due to the inherent non-separability of the images, and the resulting
modeling error is seen as blockiness in the reconstructed images where smooth lines are expected.
This can be seen in the simulation pictures presented in Chapter 6. In applications where such
degradation is intolerable such as medical applications of computerized tomography, there are
approaches for overcoming the border effect. One approach involves using overlapping subblocks
and subsequently discarding the borders. In our application, however, this minor degradation in
the reconstructed picture quality is not a problem. This is because the main aim in remote piloting

is not a determination of the shape of the object, but its relative orientation to the parent

IO B O OO0 NI N 0 M) O%,
l.’ t‘.'*ti"’?"f!’l’*"?a.‘fi' P "‘-z’l‘,*.,l"(v’! [.l!g'lg.:",w‘,'&!l’.‘,t_'.‘,th‘a’ Q‘q A
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Figure 2.  Representation of the video image sequence as an N-dimensional vector (N=N,xN,).
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-::§ spacecraft. Also. the shape of the object is almost always known a priori. For these reasons,
I
N
i processing of the images in 32X32 pixel subblocks is considered a good compromise between picture
gt
"::: quality and computational complexity.
1
1§;. What {ollows is 2 mathematical model of the image processing problem.
‘i,q.
¥
¥ 2.2. Equation Formulation
KX
:_:u‘ The source is a sequence of N-dimensional vectors {f(k)}.
A
wr £(x) = (£,(K)f,(K). . ... £ (kD7 (1)
'
2
R where N is the number of elements in vector f(k). and k is the frame number in the sequence.
B X3
e b
s
® For the image processing application, each vector f(k) represents a video frame with N
‘l' 1
i:: number of pixels. For a frame containing N, rows and N, columns,
W N=N,XN,.
A
e The scene dynamics are modeled as a state vector model where a frame is represented as a state
W
i:" vector. The structure of the first-order model is
R
i f(k+1) = Af(k) + W(K) . (2)
Wy
: where the suffixes k and k+1 are discrete time instants. Matrix A represents system parameters,
'O
::::' and W(k), the system modeling error.
9'.'\
o In order to improve the accuracy of prediction, it is often helpful to increase the order of the
O
z model sc as to whiten the modeling error, W. This is equivalent to estimating f(k+1) based upon
;'9 not just f(k). but also f(k-1).f(k-2).....f(k-M). In this case, the system mode!l has the following
g ! structure
\.|
il
4
e f(k+1) = A f(K) + A f(k=1) + - -+ + Ay, ,f(k=M) + W(k). (3)
P
Y
W
"
e Equation (3) is readily recognized as a higher-order state model where now the state vector is
s
.\‘
“‘ of
K
R ag
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s

FG)T k=17 -+ fk=MT)". (4)

Tke observed data is corrupted by channel noise representing the digital daia transmission error

associated with the satellite link. The general system model for a first-order model is as follows:
f(k+1) = AGK) £(x) + W(k): f(k) € R" (5)

where A (k) is the system matrix,
f(k) is the N-dimensional state vector,
W(k) is the modeling error between the actual value f(k+1) and the
predicted value ftilde(k+1/k),
f(k+1/k) is the estimate at time k+1 knowing measurements at time

instants up to and including k.

This state vector model is similar 1o the model used in Kalman filter application. However,
here we are not using any observations for updating the estimates at each instant as the new data
becomes available. Instead. we consider a subset of the available frames to predict the next few
frames using the state vector equation only, and show that as more frames are received, we can

derive a better estimate due to a decrease in the number of steps of prediction required.

A prediction of the vector f (k+1) is formed based on the past statistics, f(k).f(k-1).....f(k-
M), using either the fixed or the adaptive predictor described in Chapters 3 and 4.

The prediction, f (k+1), is obtained from
1. (k)

(one-step prediction, f(k+1)/f(x)). or
2. f(k)and f(k-1)

(two-step prediction, (f (k+1)/f(k), f(k-1)), or

3. f(k), f(k-1). f(k-2).... and f(k-M)

(multi-step prediction, (f (k+1)/f(k), f(k-1).....f(k-M)).

00000000 A0 ASGACMNARL o
’v"‘.".i..v.!.:‘.!.ie‘4.‘-‘l':.‘.i'l“'f"z.“‘"-l.l't."‘.‘l."d'.:".l'?‘-“.‘:'f"‘:
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The model presented above is used in Chapters 3 and 4 to derive frame estimates via fixed and
adaptive predictors. The estimate, f(k+1), is compared with the actual frame f(k+1) to obtain both
a subjective and an objective evaluation. For the subjective evaluation, the frame data is converted
from digital-to-analog format as described in Chapter 1 and is displayed on a computer monitor.
The performance is also analyzed using a set of objective measures of performance which are

described in detail in the following section.

2.3. Performance Criteria

Having modeled our system, our next objective is to outline a set of criteria for analyzing and
comparing the performance of various techniques for image data prediction. In this section, we
discuss criteria for an objective evaluation of the reproduced images. It is recognized that the
visual fidelity assessment of reconstructed video images is based upon a subjective evaluation of
the images. This is because the ultimate user of these images is man. Seyler [8] describes visual
communications and the psychopbysics of human vision and suggests that the objective of
television is to produce “as accurately as practicable a realistic replica of the natural environment
shown, i.e., (10 create) in the viewer’s mind the illusion of direct communication." We assume that
the television cameras employed on board the spacecraft conform to an accepted standard and
regard the original video frames as an accurate replica of the real scene. Our objective then is to
reproduce those images with as little distortion as possible. Since the ultimate destination of these

images is a man-in-the-loop, the most important criterion is his accurate perception of the scene.

However, for the purpose of designing communications systems and for comparing
performances of alternative systems and designs, one also requires an explicit evaluation of the
reproduced images. It is widely recognized that to mathematically model man’s sense of vision.
including luminance and chrominance vision, is a very complex problem. It is an accepted practice

to employ measurements which are analytically more tractable then the mathematical models of

buman vision and have criterion values. This applies both to analog and digital transmissions, and
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monochrome and color images. In this work, however, we are concerned with digital transmission

and monochrome images only.

In employing objective measures of performance for assessing visual fidelity of reconstructed
images, it is implied that video distortion is identifiable with errors in reproduction and will result
in a poor performance with respect to the objective criteria employed. Otherwise, the criteria
would bhave only a limited value or none at all. A number of papers on image processing have
addressed this issue and sought to find a numerically-valued measure of distortion which has a
reasonable cerrespondence with the subjective evaluation by a human interpreter. Hall, Budrikis,

and Mannos [9.10,11] address this problem and suggest some alternatives.

In this work, since we also propose to use subjective evaluation for the reproduced images, we
have restricted ourselves to commonly used objective measures of performance which are described

below.

2.3.1. Standard image gquality measures

Some commonly used image quality measures are defined below.

1. Mean-Square Error

One of the most commonly used quality or distortion measure is mean-square error (MSE).

MSE is defined as

MSE = E [f{k) — f(x))°.

where F(k) is the estimate of the frame and f(k) . the actual frame .

For an N XN discrete image. MSE may be defined as
y NN
MSE = —— ¥ ¥ [f(.{) = £GL.)F . 6)

NXN i=] j=1

Thais measure is attractive because it is analytically tractable. Its limitation is that on certain kinds

of images, it does not correspond very closely with human evaluation.

2. Normalized Mean-Square Error
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One can also define an image quality measure based on MSE and energy normalization. It is
called normalized mean square error (NMSE), ard it is defined as

. MSE between the original and reconstructed frame
NMSE =

variance of the original image

For an NXN discrete image,

N N ~
T T fG.)) - £GP
B i=1 j=1
NMSE = T ) @))
T ¥ [GpYF
i=1 j=1

The NMSE measure performs better than the MSE. It maintains the analytical tractability of the
MSE and is equally simple to compute.

3. Mean Absolute Error

Another simple measure is that of mean absolute error (MABSE). Its appeal is mainly due to
the simplicity. It is defined as

N N

1 -~
MABSE = 2 G =G, (8)
NxN _
i=1 j=1
where |-! represents the absolu.«: value of the argument. The MABSE performs well at low

intensity levels since incremental values at low intensity levels are more noticeable than those at
high intensity values.

4. S:wignal-to-Noise Ratio
Thae peak-to-peak signal-to-noise ratio (SNR) is defined as

(peak—to—peak signal value)®
SNR = 10 log pe peat Te . (9)
MSE

where peak-to-peay signal value is 255 for an image quantized with 8 bits. The SNR is a
common.y accepted image quality measure and has a reasonably good correlation with the

distortior in the reproduced image.

The results in Chapters 3, 4, and 5 are tabulated according to these criteria for various cases.




or.
it

) E

% 17

8 i-:

* CHAPTER 3
i ' APPLICATION OF A FIXED PREDICTCR FOR IMAGE DATA PREDICTION
N

..

1 3.1. Introduction

> o

. °

4

In Chapter 3, we present a mathematical model that could be used to describe the dynamical

2 . behavior of the image processing problem. The problem with modeling the scene dynamics as a
4 ,'{. state vector model is a complex one since the system matrix, A, of Equation (5) is highly scene-
‘" }\7

aependent. and also depends on how rapidly the object is moving. In an application such as video

.
o
e

image processing, where the system and noise models are either ill-defined or not completely

specified. it is feasible to estimate a model using ceriain properties which are peculiar to video

| £

images. For developing a fixed predicior. we derive a state vector model by exploiting the high

P level of adjacent-pixel correlation inherent in video images. This is true both of adjacent pixels of a

-

R Pt BS &
T

frame as well as ccrresponding pixels of adjacent frames. We call this a fixed predictor because we

i <
® ey
n use a fixed system matrix, A. This predictor is then applied to the most recent set of video frames
. received for the purpose of estimating the next few frames of the sequence.
.
' The advantages of using this predictor for image data prediction are as follows:
o
i . (1) To carry out on-line prediction of image data using frames as they become available instead of
. - doing frame refresh, which depends only on the last frame received. Here, we utilize more
A
AR data to try to derive a more accurate estimate.
.
JEEN (2) To incorporate modeling error as system noise to improve the accuracy of the prediction even
v "
~
d more. This is net feasible with frame refresh alone.
L A
-
; . (3) To derive interframe motion using a set of the last frames received via a determination of
e, . . . . . .
k. - pixel trajectories or other techniques and use the displaced frames instead of the actual ores
'y
gl
: for the prediction. Thus. we can do motior. compensation which the technique of frame
) -
B v':
8 refresh does not allow.
¢ L
o
=t

1
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In Chapter 6, we present :he pictures of the franme estimates derived via varicus combinations
of available frames for both single as well as multiple steps of prediction. The performance
according to the criteria outlined in Chapter 2 is summarized in Tables 1-5. The results obtained
with the use of frame refresh only are summarized in Tables 6 and 7 for a comparison. It is shown
that the use of the fixed predictor provides better criterion values (MSE and SNR) than the frame
refresh. However, an evaluation of both the objective and the subjective merit of the reconstructed

frames seems 1o indicate that there is not a tremendous improvement over frame refresh.

3.2. Equation Formulation

We use a sequence of frames {f(k)}, where each f(x) is an N|XN,- dimensional matrix. As
explained in Chapter 2, f(k) is considered to be a 32X32 matrix. The structure of the first-order
model is as given in Chapter 2, Equations (2)-(5). The unmodeled dyramics are accounted for by a
model error termm. Just as a reference, the general system equation for a firsi-order model is as

follows:
f(k+1) = A(K) f(k) + W(k): f(x) € RY (10)

where A(k) is the system matrix
f(k) is the N-dimensional (N=N,;XN,) state vector,
W(k) is the modeling error between the actual value f(k+1) and the predicted value

f(k+1,k),

f(k+1/k) is the estimate of f(k+1) knowing measurements at time
instants up to and including k. and
the suffixes. k and k+1, are discrete time instants.
Assumption The statistical properties of W(k) are assumed to be zero-mean white Gaussian noise

with the covariance given by

E{W(k, WD} = Q(x)8,,

R e e e e e e T e e e e e e e e e e e e
.
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Table 1. Fixed Predictor. Next-Frame Prediction

f(K+1) = O(K+1.K)*(K)

DESCRIPTION | BLK # | MABSE | MSE | % NMSE | SNK(aB) ; OVERALL IM-
| AGE S\R (aB)
1 3.01 18.6 0.16 354 |
IMAGE 2 -
2 1.90 8.8 0.08 38.7
FROM 37.4
3 1.9 14.2 0.15 36.6
| IMAGE®T T 3 1.7 5.5 0.05 40.8
9 i 4.8 40.0 0.34 32.1
N _ | IMAGE 3
SOERY 2 2.5 15.1 0.14 36.3
AR FROM : 33.6
At | 3 4.96 48.0 0.47 31.3
O IMAGE 2 4 2.5 11.3 0.11 376
= - 1 5.5 54.0 0.47 30.8
- IMAGE 4
o 2 2.5 14.6 0.14 36.5
b o | FROM , 333
N : 3 4.7 42.4 0.40 319 |
WO IMAGE 3 4 2.22 9.55 0.09 383 | ;
W 0 } 1 586 | 517 0.49 30.5 ‘|
N IMAGE 5 {
AR , 2 2.74 16.7 0.16 35.9 :
SR | FROM | 33.3 ?
o i 3 435 37.5 0.35 324 | |
% | IMAGE4 | 4 23 10.0 0.09 381 | !
_J L | 9.11 166.0 1.45 259 | |
o IMAGE 6 | i
W 2 9.35 277.0 1.80 246 !
ATERY FROM - 271 ;
oy 3 5.29 55.8 0.52 30.7 |
° N IMAGES | 4 5.03 54.2 0.47 308 | j
SR 1 588 | 719 0.62 29.6 |
S IMAGE7 '
L 2 6.62 121.0 0.92 27.3 :
N FROM 30.0 |
S ! 3 4.7 46.0 0.43 315 | |
8- IMAGE 6 3 31 203 0.17 351 |
> | 1 6.8 87.4 0.72 287 |
o . IMAGES$ , ' |
% : 2187 11930 1.4 25.3 |
[ | FROM L 28.4
L. o | 3| 5o 69.3 0.60 29.7 |
o O IMAGE7 4 ] 332 T a0 021 | 341 j
'J'.: ‘.
b’ .;,
o "
“ o
04 -
e
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\"f‘ Table 2. Fixed Predictor. Two-Frame Ahead Prediction
SR
B
. f(K+2) = ®(K+2,K)*f(K)
,:,:4
>
<o DESCRIPTION BLK # MABSE MSE % NMSE SNK (dB) OVERALL  IMAGE
N SNR (dB)
Al 1 4.93 41.2 0.35 32.0
) IMAGE 3
L) 2 2.65 15.0 0.14 36.4
g FROM 331
- 3 5.82 57.0 0.49 30.6
.‘ng.o IMAGE 1
{..:: 4 2.66 13.3 0.13 36.9
P 1 4.80 al.4 0.36 32.0
IMAGE 4 .
5 2 2.37 11.2 0.11 37.6
W FROM 317
0 3 8.65 108.0 0.88 27.8
: y IMAGE 2
W 4 3.04 17.1 0.16 35.8
! 1 5.34 57.5 0.49 30.5
IMAGE 5
2 2 2.87 18.2 0.17 35.5
N2 FROM 32.3
1 :‘_ 3 6.38 63.6 0.52 30.1
A IMAGE 3
hody 4 2.88 15.8 0.15 36.1
1 1 7.95 135.0 1.18 26.8
: IMAGE 6
KL, 2 10.2 240.0 1.91 24.3
‘j-. FROM 27.1
’ 3 6.08 62.9 0.52 30.2
e IMAGE 4
~ 4 5.81 67.8 0.58 29.8
B 1 9.04 148.0 1.27 26.4
) IMAGE 7
o 2 12.2 343.0 2.62 22.8
'f_.,j FROM 26.1
o 3 6.89 76.9 0.62 29.3
g IMAGE §
S 4 5.65 68.4 0.59 29.8 J
£ 1 7.97 109.0 0.89 27.8 |
) IMAGE 8
D 2 10.4 254.0 1.84 24.1
o FROM 27.2
> 3 7.84 103.0 0.79 28.0
, --\.: IMAGE 6
Ve a4 | 365 309 | 026 33.2 ]
’
1 r]
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"“ u Table 3. Fixed Predictor Three-Frume Ahead Prediction
(%)
i
N o F(K+3) = O(K+3.K)$6(K)

~
':'1.
" I DESCRIPTION | BLK # | MABSE « MSE | % NMSE | SNR(dB) | OVERALL  IM-
SR ? ‘ AGES\R (dB)
o 1 518 467 0.40 314 | |
"* IMAGE 4
e 2 272 148 | 0.4 36.4 |

‘ FROM 31.9 |
e 3 7.68 | 89.4 0.73 28.6 !
AN IMAGE 1 : E
Pl 4 296 | 157 0.15 36.2 4
S i 527 s01 | 043 311
e 2‘; IMAGE 5
- ® 2 2.79 172 0.16 35.8

X FROM : 31.3
N < 3 8.52 | 104.0 0.84 28.0
oA IMAGE 2
3 4 3.35 212 0.20 349 ;
o 1 8.94 | 154.0 1.34 26.3
, ﬁ IMAGE 6
KON 2 9.67 | 2240 1.78 24.6
e o FROM 27.1
i & 3 561 | 610 | 0.50 30.3
e IMAGE 3
el 4 6.01 72.8 0.63 29.5
) [ 1 §.41 | 1280 1.1 271
SO IMAGE 7
e 2 120 | 3280 | 25 230
SOV FROM ‘ 26.5
P N 3 6.11 61.4 0.5 30.2
- IMAGE 4 j
v - 1 | s83 | 679 | o6 298 | |
Lo 1 9.9 | 1790 1.47 256 | |
y IMAGE 8 T ; ; ? ':
il 2 14.8 | 4780 | 3.45 | 213 ' |
KN FROM ‘ 1 24.9 !
o 3 s4 11080 | 083 | 278 | 1
o | IMAGES ‘ ‘ | ,
oo 2 L4 e 745 | 063 ' 294
|‘ o
e
&
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. Table 4. Fixed Predictor, Next-Frame Prediction
*l' Uring a Last Two Frames Received
v f(K+1) = Apsf(K)+A#f(K—1)
0,.'
» DESCRIPTION | BLK # | MABSE | MSE % NMSE | SNR (dB) | OVERALL IM-
o AGE SNR (dB)
2 1 4.63 36.7 0.31 32.5
> IMAGE 3
" 2 2.42 13.3 0.13 36.9
FROM 33.7
. IMAGE 2 & 3 5.45 51.2 0.44 31.0
vt IMAGE 1
W 4 2.4 10.8 0.10 37.8
3y 1 4.68 39.9 0.34 321
G IMAGE 4
2 2.19 9.75 0.09 382
FROM 33.4
5 IMAGE 3 & 3 6.16 60.1 0.49 303
& IMAGE 2
4 2.29 10.1 0.09 38.1
5 1 5.28 45.8 0.39 31.5
IMAGE 5
.,;\ 2 2.52 13.9 0.13 36.7
2 FROM 33.7
0N IMAGE 4 & 3 4.96 411 0.33 32.0
3:;2 IMAGE 3
B) 4 2.31 10.2 0.09 38.1
ey 1 8.13 139.0 1.21 26.7
o IMAGE 6
L 2 9.43 224.0 1.78 24.6
e FROM 27.4
o IMAGE 5 & 3 5.52 54.5 0.45 308
'é ' IMAGE 4
o 4 5.16 55.9 0.48 30.7
o 1 6.13 69.9 0.60 29.7
e IMAGE 7
;-'; 2 §.03 169.0 1.29 25.8
) FROM 29.1
>0y IMAGE 6 & 3 5.52 51.3 0.42 31.0
e IMAGE 5
o 4 3.72 28.8 0.25 33.5
fo-t 1 6.83 80.1 0.66 291
b IMAGE 8
~h 2 §.84 193.0 1.4 25.3
N FROM 28.4
ol IMAGE 7 & 3 6.78 77.1 0.59 29.3
s ' IMAGE 6 i
3:: ’ 4 326 23.4 0.198 34.4
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Table 5. Fixed Predictor, Next-Frame Prediction
Using Last Three Frames Received

f(K+1) = A #f(K)+ A8 (K—1)+ A 3 (K—2)

DESCRIPTION | BLK # | MABSE | MSE | %NMSE | SNR(dB) | OVERALL IM-
AGE SN\R (dB)
1 4.63 38.8 0.34 32.2
IMAGE 4
2 220 9.79 0.09 38.2
FROM ; | 33.1
3 6.55 66.7 : 0.55 29.9
IMAGE 3 & 4 2.40 10.9 0.10 37.7
IMAGE 2 &
IMAGE 1
1 4.96 42.1 0.36 31.9
IMAGE 5
2 2.43 12.7 0.12 37.1
FROM 33.5
3 5.58 48.9 0.40 31.2
IMAGE 4 & 4 2.44 11.6 0.11 315
IMAGE 3 &
IMAGE 2
1 8.15 135.0 1.18 26.8
IMAGE 6
2 9.44 222.0 1.77 24.7
FROM 27.5
3 5.11 48.8 0.40 31.2
IMAGE 5 & 4 5.37 60.0 0.52 30.3
IMAGE 4 &
IMAGE 3 ,
1 6.42 772 | 0.66 29.3
IMAGE 7
2 9.11 207.0 1.58 25.0
FROM 28.5
3 5.35 47.7 0.39 31.3
IMAGE 6 & 4 423 37.2 0.319 32.4
IMAGE 5 &
IMAGE 4
1 | 689 828 | 068 29.0
IMAGE 8 ;
2 9.89 233.0 | 1.69 24.5
FROM : i 27.9
3 ! 691 76.6 | 0.58 29.3
IMAGE 7 & | 4 | 362 | 291 0.25 33.5
IMAGE 6 & | |
UMAGES | B |
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Table 6. Next-Frame Prediction by Frame Refresh

DESCRIPTION | BLK # MABSE MSE | %NMSE | SNR(dB) | OVERALL IM-
AGE SNR (dB)
1 3.37 22.5 0.19 34.9
IMAGE 2
2 2.14 8.8 0.08 38.7
FROM 36.2
3 3.35 22,6 0.19 34.6
IMAGE 1 4 2.16 8.94 0.08 38.6
1 5.07 44.2 0.37 31.7
IMAGE 3
2 2.72 18.2 0.17 35.5
FROM 33.2
3 5.04 44.8 0.38 31.6
IMAGE 2 4 2.76 16.8 0.16 35.9
1 5.73 59.1 0.51 30.4
IMAGE 4
2 2.70 15.7 0.15 36.2
FROM 32.3
3 587 62.4 0.54 30.8
IMAGE 3 4 2.76 16.6 0.16 35.9
1 6.07 61.9 0.53 30.2
IMAGE 5
2 2.90 17.8 0.17 35.6
FROM 321
3 6.22 65.1 0.56 30.0
IMAGE 4 4 2.9416.3 0.15 36.0
1 923 | 171.0 1.49 25.8
IMAGE 6
2 9.42 | 226.0 1.80 24.6
FROM 25.0
3 9.75 | 189.0 1.65 25.4
IMAGE 5 4 10.0 249.0 1.96 242
1 6.09 76.2 0.66 29.3
IMAGE 7 :
2 6.85 | 132.0 1.00 26.9 ‘
FROM . 27.8 ’
3 6.10 | 78.4 0.68 29.2
IMAGE 6 4 749 1470 1.10 26.5
1 7.01 J 94.2 0.77 28.4
IMAGE § i
2 904 | 206.0 1.49 25.0
FROM j _262
3 6.95 95.0 0.78 28.4 |
IMAGE 7 4 9.92 | 2330 1.64 24.5 |
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i n Table 7. Frame Refresh, Two-Frame Ahead Prediction

v” - U -~
e f(K+1) = A 3f(K)+ Apsf(K—1)+Ayef(K—2)

0 o
t g
',.1%. e | DESCRIPTION | BLK # | MABSE | MSE | %NMSE | SNR(dB) | OVERALL IM-
i , . AGE SNR (dB)
. ¥ | 1 5.11 44.6 0.38 31.6
IR | IMAGE 3
i . 2 2.68 16.0 0.15 36.1
;" o) | FROM 33.4
i 0 ; 3 5.08 45.3 0.38 31.6
| IMAGE 1 4 2.70 14.4 0.14 36.6

" - ; 1 5.14 47.2 0.41 31.4
A | IMAGE 4

v ! 2 2.54 13.2 0.13 36.9
" ‘\ hY A4
'? ;“"' | FROM 33
Y 3 5.19 48.4 0.42 31.3

¢ ~ IMAGE 2 4 2.58 11.6 0.11 37.5
O 1 6.11 63.9 0.54 30.1
NI IMAGE 5

SIS 2 2.91 17.6 0.17 35.7

o FROM 32.0
Lo “ 3 6.18 66.5 0.57 29.9

L IMAGE 3 4 2.93 15.9 0.15 36.1

N ] 1 8.26 141.0 1.23 26.6
ST ~ IMAGE 6
CORR ; 2 9.74 | 228.0 1.81 24.6
25 | FROM 25.3

' [ ; 3 8.59 153.0 1.34 26.3
e = IMAGE 4 4 10.4 249.0 1.93 24.2
s ! 1 9.31 155.0 1.33 26.2
K L © IMAGE 7
W : 2 11.8 330.0 2.52 22.9
o ' FROM 24.1
e ; 3 9.64 | 166.0 1.43 259 |
N ' IMAGE S 4 12.7 366.0 2.74 225 |

- : 1 | 8.0 111.0 0.91 27.7
SO IMAGE 8 ‘

'y po | 2 104 259.0 1.87 24.0

Yy | FROM ‘ 25.3
v ‘ 3 1 173 106.0 C87 27.9

oo IMAGE 6 4 1 115 292.0 2.06 235 |
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where Q(k) is a positive semi-definite matrix and 8, is the Kronecker delta

1 for k=1
=l0 for k=1("

Algorithm for fixed prediction in the absence of modeling error.
(1) Relation between prediction f(k+1) and f(k).

f(k+1/K) = A(K) £(K) . (11)

(2) For multiple steps of prediction, the relation between f(k+M/k) and f(k) is given by
F(k+M/k) = S(k+M.K) £(k) (12)

where @ is the state transition matrix.

®(m.m) =1
) (13)
¢(m.n) = A(m—1). A(m-2) -+ A(n)
A generalized state model is
f(k) = &(k.k—M) f(k~M) + W(k) . (14)

It is seen that the fixed predictor resembles the standard estimation technique of Kalman filter
with one exception. Here, we are not using a measurement vector to update the parameters
between samples. However, the fixed predictor allows us to update the state vector by using
the most recent set of frames, and thus provides a better estimate as the number of steps of

prediction is lowered.

3.3. Performance Evaluation

In order to find a suitable system matrix A, we used the fact that video images are
characterized by very high pixel correlaticn. both in the space domain and the time doinain, i.e., in
the temporal direction. We assume that the pixels are zero-mean samples of a separable Markov

process. Then, by assuming a fixed adjacent-pixel correlation. the structure of the A matrix is as

Vo " LA

r A W) AT AL
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» . . . . .
shown in Figure 3. This correlation structure is used 1o describe both spatial and temporal

. correlation. ie., between adjacent pixels of a frame as well as between corresponding pixels of

adjacent frames. We assume a fixed pixe! correlation of 0.96 for both intraframe and inter{rame

Gy
o
of correlation. This results in an A matrix . ~own in Appendix B for a first- crder system for one
'12 frame-ahead prediction using the last frame received. Other matrices are selected likewise 10
h
increase the system order for increasing the accuracy of prediction.
g“? Tables 1-5 show the results ol applying this algorithm to obtain frame estimates for the next
- frame (Table 1), two-frame ahe~d prediction (Table 2), three-frame ahead prediction (Table 3),
o
N
) next-frame prediction using the last two frames received (Table 4), and using the last three frames
;‘5 (Table 5). The results of the frame refresh technique applied to the next-frame prediction are
surnmarized in Tables 6 and 7 for a prediction based on the last frame received, and the last two
;~
o frames. respectively. These are presented for a contrast with the fixed predictor results. It is seen
“a from these tables that the fixed predictor provides better criterion values than frame refresh in
aimost all the cases. The results in Tabies 1-5 were obtained witkout compensating for moticn
f_. .
<. compensation. It is shown in Chapter 5 that it is possible to improve upon the performance of the

predictor by estimating and compensating for the interframe displacements. The pictures of the

1

frame estimates are presented in Chapter 6. From a subjective evaluation of :he reconstructed
frames, it appears that there is not a tremendous advantage to using a fixed predictor over a simple
frame refresh in spite of what the criterion values indicate. All these results and a subjective

evaluation of the reconstructed frames are discussed in detail in Chapter 6.
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CHAPTER 4

! APPLICATION OF AN ADAPTIVE PREDICTOR FOR IMAGE DATA PREDICTION

:::: 4.1. Introduction

o

In the case of a fixed predictor, we assume a certain model for describing the interframe

%‘i relationship cf a video sequence. That model is then used for prediction of frames using a set of

e past frames. In the case of an adaptive predictor, we estimate the state vector model using the

~
interframe correlation of the available frames, and by making an assumption that the model can ke

N . . : o

»Q approximated as a wide-sense stationary random process. In an application such as remotely

) piioted spacecraft, it appears to be a reasonable assumption especially in the docking mode which is

%

& characterized by very slow motion.

- The approach used for developing the adaptive predictor is the classical parameter estimation
technique of generalized least squares. We seek 1o find an optimal adaptive predictor which would

0 provide a ieast mean-square solution to the prediction problem. i.e.. minimize the square of the

.. error between the criginal and the reconstructed frames. It is shown in this chapter that the ill-

g conditioned nature of the image processing prcblem, specifically the sample covariances, render it

; compuataticnaliy a very ccmplex problem. It is shown that when we represent the images by the
intensity values of the pixels, the resulting matrices are almost always singular or nearly singular.

.'_:

e In the :mage processing problem, the image degradation is represented as a transformation. Hence,
to recever the original image from a degraded one or to reconstruct images often requires
¢hmputatien of inverse transformations, which is mathematically represented as a mati X inversion
rronlem. It s shown that such matrices have zero or near-zero eigenva.ues and thus it is not
ressinle e find ananverse. We show that the well-known technique cf adding a disturbance aiong

o a2 dagenal (o stahilize singular matrices does not overcome the problem of the singularity of these

R matr.ces We then explore the use of Singular Value Decomposition (SV'D) in order i isolate and

:
<iseat@ taw near zerc singular values and altempt to find an inverse by effectively reducing the

" “t3n ! 'ne matnix. IUis shown that the large variation in the singular values effectivelv amplifies
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! the noise and makes the recovered image unacceptable in terms of visual fidelity. Because cof the

mathematical complexity associated with the optimal adaptive predictor. we use a suboptimal

....- ’
....‘
o
]

K adaptive predictor which still uses the previous samples to derive the frame estimates. The intent
"'..

)

:.::::. is to evaluate the performance of this suboptimal predictor relative to that of the fixed predictor
"M

and frame refresh.

L]
X
;::’.. 4.2. Equation Formulation
G
o
As mentioned above, the algorithm for the adaptive preditor is based on the standard
"
| 2\: technique of generalized least squares parameter estimation. The equations summarized below can
X
". be found in any standard textbook or reference in estimation theory and in [3]. A prediction of
.'n‘.‘.\ - ~
0! vector f(k). namely. f(k), is formed based on previously reconstructed vector f"(k-1) as shown in
—~ _
2 ;}:-:: Figure 4.
J N
N . X
e f(k) = B(k) f(k—=1), (15)
».B
b Y where B(k) is a time-varying predictor and f(k) is the kth frame of the sequence. The prediction
"2 %%
Als 2y s
oy can also be based upon a set of previously reconstructed vectors, {f(k—1).f(k—2).....f(k—=M)}. For a
A5
Lo non-time-varying predictor,
)
[y \J -~ -~
b f(k) = Bf(k—1) . (16)
& 4
oy
',' . The B vector can also be chosen to be a diagonal matrix,
W
ol B = diag(b,.b,. . . .. SO (17)
‘t in which case each element of the estimated vector f,(k) depends only on the corresponding element
' of the previous reconstructed vector, f(k—l). ie.,
ad
o - R
pe: f(x)=bf(k—1).
" A
4’::- Using M previously reconsiructed vectors.
NS f(x) = B(k) g(k) . (18)
N
:::':
'\( where g(k) is a column vector consisting of the M previous vectors
Al

]
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g(k)T = (F(x—1DT f(x~2)" - -+ fxk=M)T). (19)
Equation (18) is a generalization of Equation (15) using multiple steps of prediction.

The prediction error e(k) is
e(k) = f(x) = B(k) g(k) . (20)

In the matrix form, e(k) can be expressed as

f,(k=1)
f,(k—1)

L0 10700y fr (k1)

£,) | |bf(K) _
e(k) = - . (21)

£ ek ! | (kM)
f,(k—M)

£ (k—=M)

Here. we are assuming that the quantization error is negligible, 1.e.,
£(k) = f(k) .

The predictor vector B(k) consists of N vectors b,(k) corresponding to each element of the vector

f(k). i.e..
B(k) = (by(k) by(k) - - by(k)T. (22)

where each b (k) consists of NXN coefficients for the i-th element of f(k). The error vector e(k) is

given by
e(k) = f (k) —b(k)glk). fori=12..N. (23)

At this point. we select the standard parameter estimation technique of least mean squares (LMS)

for developing an optimal predictor. In other words. an optimal predictor is one that minimizes the

reconstruction error, e/k). Using this criterion. the optimal estimate would be the LMS estimate.
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The LMS estimate f(k) is obtained by choesing the predictor matrix B(K) such that the mean

square reccnstruction error is minimized, i.e.,
MSE = E{e:(k)z} is minimized for all i=1.2,..N.
The error covariance matrix R (k) is defined as
A T
R (k) =E{e(k) e(x)'}
Min {el(k)z} = Min{Diagonal elements of R (k)}
= Min{tr R,(x)} .
The optimal predictor B(K) minimizes the trace of R,(k) for an LMS criterion,
VB(k){tr RC(K)} =0.
Using simple matrix manipulations and the following properties of a trace operator,

tr(A+B)=1r A +1rB.and
trAT=twr A,

tr{R,(K)} = tr Ele(k) e(x)")

= 1r E{[f(k)=B(k) g()N (k) —g(x)" BT
= tr{R(k.x)=B(k) Ryy(5)—R,(x)TB(x)" + BIKOR (xIB(K))
= tr(R(k.k)) = 2 tr(BIR (k)
+ r(B(R (x)B(R)T)
where the fcllowing definitions f:r covariance matrices aprly
R(kl.kz)A=E{f('kl) f(k,)7)
Rg(k)A=E{g(k) g(x)7)

A T
R, (k) =E{g(x) f(k)} .

(24)

(25)

(26)

(27)

(28)

(29)

(30)

The opt:mal predictor B(k), namely, B is such that it min:mizes tr{R,(x)}. i.e., from Equations

(29 and (1§)
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” [}
:: B” = B(k) such that :
.
. Vawltr Rk} = 2 1r{B(KIR, (k)} + Lr{B(k)Rg(k)B(k)T}] =0. (31)
4
o Using simple matrix manipulation and the following rules of matrix gracient  zrations.
.
Vytur (BA)= AT and (32)
o !
o
N Vgtr (BABY) = BAT 4+ BA. for the optimal predictor,
Vo tr {R(K)) = =2 R(k)" + BOR,(K) + R (K)) = 0. (33)
T
:‘; Since R, (k) is symmetric, assuming that its inverse exists, the LMS predictor, 3
3 ) = RGO R G .
" B7(k) = Rye(k)” R (k). (34) |
: 3 The LMS prediction error,
N
2 e'(k) = £(k) — B'(k) g(k) (35)
, together with R.(k) and R,(k). can be approximated using the covariance of the original data,
N E{f(x—1f(x)"} ] R(k-1k)
> T
E{f(k—2)f(k R(k—2 k
& R G0 = [BOA00T | RG220 |
. E{f(x=M)()T} R(k—M.K)
o
£n
o]
y E{f(k—1)f(k—1)T} - - - E{f(k—1f(k=M)"}
q R,(k) = . . (36)
- E{f (k=M (k—1)T} - -+ Eff (k=M (k—=M)T}
- R(k=1k-1) - -+ R(k=1,k—M)
o R(K—M.K—1) - - - RCKK—M.K=M)
8
) {
b For a single-step prediction,
‘.': ‘
€
= R, (k) =R(k—1k) and (37)
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Rk} =R(x=1.x—~1).

In the following section. we address the mathematical problems of using the optimal predictor
der:ved in this secticn for obtaining the frame estimates. The equation for the cptimal predictor,
Equation (34), assumes that the frame to be estimated is available for deriving the autocorrelation
between previous frames represented by g(k) and f(k). Hence. in practice, one must somehow
estimate this autocorreiation. We do this by assuming that the image sequence is represented by a
zero-mean separable Markov process which is wide-sense stationary. Specifically, the equations for
a suboptimal predictor are derived as follows: The optimal predictor is given by Equation (34),

lLe.,

B™ (k) = R(x)T R (34)
In the case of the next frame prediction using only the last frame received. ie., f (k+1) using only
(x>, the optimal predictor is given by

B'(k) = E{f(k) f(k=1)"} E{f(k=1) f(k—1}T}" (38)

= (k) fk—DT} (k1) f(x=D)T} 7. (39)

We derive a suboptimal predictor by using the wide-sense stationarity on the covariance
stationarity of the image sequence as foilows:
Using Equations (18 and (39). the frame estimate is

£(k) = H(k=1) k=) (k=1) f(k—=D" 7 £(k=1).. (40)

A< we see, this approach wouid require at least a couple of frames in orcder tc estimate the next
‘rame of the sequence Equation (34) assumes that an inverse of R.(k) exists. The mathematical

details of the problem are discussed in the next section.

4.3. Application of Singular Value Decomposition (SVD) to the Image Processing Problem

, . . . L .
The equation fcr tae uptimal feedback predictor, B, given by Equaticn (34). assumes that an

inverse of Rg(k) exists. "When we apply the adaptive predictor algerithm for frame predicticn

o AT R AT AT AT A A 4
AR i Bt R
[ l‘a"-.n 4 8 cn )
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using the last two frames received according to Equation (40), we find that the matrix R (k) is
singular. This is because it has many zero eigenvalues as seen in Figure 5a. We then try to make it
nonsingular by adding a small constant to the diagonal of Rg(k). Figure 5b shows the resulting
eigenvalues. It is obvous that the matrix is so ill-conditioned that it can not be inverted. In such
problems involving singular matrices, one would compute the generalized inverse which is the

minimum norm solution. Equation (40) may be rewritten as
f(x) = [£(k—1) f(x=2)] (Fx—1)D)", (41)

where ' represents the Moore-Penrose pseudoinverse. For a matrix A, the Moore-Penrose inverse is
given by
Al=(ATA)T AT, (42)
Since the matrix [f(k—1)f(k~1)T] is singular, its rank is less than the order of f(k-1) or the
number of unknowns. Hence, there is no unique inverse for this matrix. In the case of an

underconstrained problem requiring a solution of a set of linear equations of the form
Ax=b,

we use singular value decomposition (SVD) which guarantees a minimum norm solution to the set
of equations represented by Ax=b. Hence, to derive an optimal predictor, we use SVD of f(x—1)"

to find a unique solution to an otherwise indeterminate problem.

The SVD problem involves spectral decomposition of the matrix, A, in Equation {42) as

follows. In the case of real matrix A,
. T
A=LZIV, (43)

where U and V are unitary matrices such that the columns of U and V are composed of a set of
orthonormal eigenvectors. U is the row eigenvector system of A and V is the column eigenvector
system of A. The matrix E is a diagonal matrix which has singular values of A (the positive
square-roots of ihe non-zero eigenvalues A, of ATA) on its diagonal. The eigenvectors u; are the

spectral components of the observation space and the eigenvectors v, are the spectral components of
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i E.VAL. 1 = 0.000E+00 E.VAL. 17 = 0.272E+01l

£ E.VAL. 2 = 0.000E+00 E.VAL. 18 = 0.478E+01

IR E.VAL. 3 = 0.000E+00 E.VAL. 19 = 0.755E+01
fi E.VAL. 4 = 0.000E+00 E.VAL. 20 = 0.120E+02
S E.VAL., 5 = 0.000E+00 E.VAL. 21 = 0.178E+02

W E.VAL. € = 0.000E+00 E.VAL. 22 = 0.205E+02
o E.VAL. 7 = 0.000E+00 E.VAL, 23 = 0.287E+02
YR E.VAL. 8 = 0.000E+00 E.VAL. 24 = 0.317E+(2
1SRN E.VAL. 9 = 0.000E+00 E.VAL. 25 = 0.328E+(2
! E.VAL. 10 = 0.000E+00 E.VAL. 26 = 0.804E+02
S E.VAL., 11 = 0.000E+0. E.VAL. 27 = 0.930E+02

b E.VAL, 12 = 0.000E+00 E.VAL. 28 = 0.119E+03

3 E.VAL. 13 = 0.000E+00 E.VAL. 29 = 0.159E+03
0 E.VAL. 14 = 0.000E+00 E.VAL., 30 = 0.247E+03
S E.VAL. 15 = 0.000E+00 E.VAL. 31 = 0.722E+04
av i E.VAL. 16 = 0.000E+00 E.VAL. 32 = 0.522E+07

;2: i (a)

N

¥ )

& h E.VAL, 1 = 0.000E+00 E.VAL. 17 = 0.360E+04
- v E.VAL. 2 = 0.000E+00 E.VAL., 18 = 0.360E+04
L E.VAL. 3 = 0.000E+00 E.VAL. 19 = 0.361E+04
SRS E.VAL. 4 = 0.000E+00 E.VAL. 20 = 0.361E+04
T E.VAL. 5 = 0.000E+00 E.VAL., 21 = 0.362E+04
, E.VAL. 6 = 0.000E+00 E.VAL., 22 = 0.362E+04
i E.VAL. 7 = 0.000E+00 E.VAL. 23 = 0.363E+04
e ! E.VAL, 8 = 0.000E+00 E.VAL. 24 = 0.363E+04
P E.VAL. 9 = G.000E+00 E.VAL. 25 = 0.363E+04
A e E.VAL. 10 = 0.000E+00 E.VAL. 26 = 0.368E+04
K W E.VAL. 11 = 0.000E+00 E.VAL. 27 = 0.369E+04
B E.VAL. 12 = 0.000E+00 E.VAL, 28 = 0.372E+04
' E.7AL., 13 = 0.000E+00 E.VAL. 29 = 0.376E+04
o E.VAL. 14 = 0.000E+00 E.VAL. 30 = 0.385E+04

SEES E.VAL. 15 = 0.000E+00 E.VAL., 31 = 0.108E+0S

ol E.VAL, 16 = 0.000E+00 E.VAL. 32 = 0.522E+07
L\ -

IS (b)

S

; 2 i Figure 5. Singularity of the image processing matrices.

s (a) The eigenvalues of [f(k—1) f(k—=1)"]. where f(k-1) corresponds to the first 32X32

N \ block image of Image 2.

- (b) The eigenvalues of [f(k— 1) 1(x=1)T + 3600 * 1], where f(k-1) corresponds to the
Q" first 32x32 bicck of Image 2 and 1 is the identily matrix.
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, the parameter space. The value of each A\, determines the amplitude of the corresponding spectral
Y
"!f * . . . .
- components u; and v;. The generalized inverse to the matrix A of Equation (43) is defined as
|".
)
\ A=vzeiuT. (44)
.
.:4}; Using Equation (43), the generalized inverse solution to the set of linear equations, Ax = b, can be
'.'? expressed as a linear combination of the eigenvectors v as
§Q'|.l P g
W
;‘ \ e
s 1
\ T
) x=2Z vi|—u bl (45)
L i=1 i
"‘ X . - . - .

.-JQ The weighting factors in this linear combination are the quantities in the square brackets. The
B T . . o .
;\'..o products u; b represent the amplitude of the ith spectral component contained in the observations,
)

;u."l

b. This quantity is divided by the response A;. Thus, the quantity in the brackets represents the
] .
y - amount of the ith spectral component contributing to the solution parameter-vector x. The equation
2% SP pe g p eq
g
A shows that the observational errors or model errors in defining the system dynamics are amplified
“Q L)

by a factor, 1/A. Thus eigenvectors that are poorly represented in the sense that they are
. i 8 poorly rep y
"‘i".
Wy . . .
'~. associated with small values of A; cannot be determined as reliably as the better represented
& eigenvectors. For limiting the influence of the eigenvectors with very small eigenvalues, one
ha
J approach is to eliminate the small eigenvalues by simply adjusting the value of the apparent rank
LU
y . - . . .
,._. of the matrix A. This is done via SVD. We now apply this appreach to try to find an approximate

Ty
." ..

:o:..‘ inverse of f(k—1)T which would give an acceptable prediction.

w

2%

e When we use the SVD of f(k—1)", we find that an acceptable solution to the problem is still
g%

'l

l’:gl' not possible. This is because of the ill-conditioned nature of the matrix which makes its non-zero
n',z. po

l"

;:::' singular values vary over a wide range as is seen from Figure 6. The values in Figures 5-7 relate to0
- prediction of Image 3 from Image 2 and Image 1. When we attempt to restore the image by
-

SN discarding the zero singular values and use the non-zero ones, we find that the smaller singular
L, 8 g 8
A A

e . . o . . )
.“ values effectively increase the contribution of the noise term and make the visual quality of the
£

s image unacceptable. The use of only the highest singular value provides acceptable values for the
20 g P y g g P P

ALy

n i- objective criteria but results in minimizing a lot of detail in the reconstructed picture. We attempt
1".

g
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S.v. 1 = 2285.074 S.v. 17 = 0.000
s.v. 2 = 26.524 S.v. 18 = 0.000
s.v. 3 = 10.268 S.v. 19 = 0.000
S.v. 4 = £.970 S.vV. 20 = 0.000
S.v. 5 = 5.073 S.v. 21 = 0.000
S.Vv. 6 = 3.395 S.v. 22 = 0.000
s.v. 7 = 2.349 S.v. 23 = 0.000
s.v. 8 = 1.788 S.V. 24 = 0.000
s.v. S = 0.000 S.V. 25 = 0.000
s.v. 10 = 0.000 S.V. 26 = 0.000
s.v. 11 = 0.C00 S.v. 27 = 0.000
S.v. 12 = 0.000 S.V. 28 = 0.000
S.v. 13 = 0.000 S.v. 29 = 0.000
S.v. 14 = 0.000 S.v. 30 = 0.000
S.v. 15 = 0.000 S.v. 31 = 0.000
S.v. 16 = 0.000 S.v. 32 = 0.000

32 (a)

106.000 102.000 101.000 98.000
o2 95.000 9$8.000 93.000 9S94.000
i 109.000 104.000 103.000 100.000

96.000 98.000 94.000 95.000
104.000 106.000 105.000 100.000
98.000 97.000 S5.000 96.000
104.000 109.000 104.000 101.000
98.000 100.000 96.000 99.000
39.000 109.000 103.000 103.000
37.000 101.000 96.000 S9.000
101.000 107.000 103.000 103.00C0
87.000 101.000 96.000 97.000

o

kot

&: 100.000 107.000 103.000 103.000

- 97.000 100.000 96.000 99.000
101.060 107.000 1G3.000 103.000

? 98.000 98.000 97.000 101.000

LY

5 (b)

o

e

Figure 6.  Singularity of the image processing matrices.
(a) The singular values of f(k—1)", where f(k-1) corresponds to the first 32x32 block
of Image 2. {b) Pixel intensities corresponding to the first $x§ block of Image 2.
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S.V. 1 = 0,171 E +24 S.v. 17 = 0.000 E +«00
S.Vv. 2 = 0,108 E +24 S.v. 18 = 0.000 E +00
S.Vv. 3 = 0,822 B +23 S.V. 19 = 0.000 E +00
S.Vv. 4 = 0.680 & +23 S.V. 20 = 0.000 E +00
S.v. 5 = 0.388 E +23 S.Vv. 21 = 0,000 & +00
S.V. 6 = 0.656 E +16 S.v. 22 = 0,000 E +00
S.V. 7 = (0.253 E +16 S.V. 23 = 0.000 E +00
S.V. 8 = 0.160 E +16 S.V. 24 = 0,000 E +00
S.Vv. 9 = 0.159 E +10 S.Vv. 25 = 0.000 E +00
S.v. 10 = 0.182 E +09 S.V. 26 = 0.000 E +00
S.v. 11 = 0.572 E +08 S.v. 27 = 0,000 E +00
S.V. 12 = 0.253 E +08 S.V. 28 = 0.000 E +00
S.V. 13 = 0.111 E +02 S.V. 29 = 0.000 E +00
S.V. 14 = 0.361 E +01 S.V. 30 = 0.000 E +00
S.Vv. 15 = 0.184 E +01 S.Vv. 31 = 0.000 E +00
S.V. 16 = 0.518 E +00 S.V. 32 = 0.000 E +00
(a)

0.333 -1,250 0.000 -~0.500

-1.750 2.000 -1.750 0.250

3.250 -0.800 0.400 0.600

-1.400 1.400 -1.000 0.600

-1.750 0.400 1.400 -~-0.800

0.200 -0.600 -0,600 0.000

0.000 2.600 -0.400 -0.200

-0.800 1.600 -1.200 2.200

-4.,250 3.600 -1.400 1.600

-2.200 2.000 -1.600 2.200

-0.750 1.600 -0.800 1.200

-2.000 2.000 -1.200 0.200

-2.250 2.200 -0.800 1.200

-2.000 1.600 -1.600 1.600

-0.750 2.000 -0.600 1.200

-1.000 -0.200 -0.800 2.200

(b)

Figure 7. Singularity of the image processingrmatrices.

fa) The singular values of f(k—1,". where f(k-1) corresponds to the first 32x32 block
of Image 2 after subtracting the local mean taken over a SX5 pixel window. (b) Pixel
intensities corresponding 10 the first 8X8 block of Image 2 afier subtracting the local

mean.
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to lower the range of the ncn-zero singular values by adjusting the matrx f(k-1) s filowe
Instead of choosing flh-1) to represent the pixel iniensitizs, we subtract from each pixel value its
Iocal me-n taken over a 5X5 pixel window centered cver that pixel. The resulting values for an
&x& pixel subbleck and the corresponding singular values of f(k—1)" are shown in Figure 7 The
new matrix is still seen 10 be ill-conditioned, preventing an acceptable solution to the invaorse

problem.

To eliminate the mathematical complexities involved in the derivation of the cptimal
precdicter, we derive a suboptimal predictor which still uses the past frames to form a prediction.
This is not unreasonabe, since any on-line estimation algorithm must be computationaliy simple to
implement. The equation for the suboptimal predicior for the next frame prediction using the last

two frames is as fcliows:

Flx) = [f(k=1) F(x=2)T) f(k—1)/ 1 f(k—1) 11 2 (46)

where Il - !l represents the Frobenius norm .
For a matrix A,
T
AL = trace (A A).

The results derived via the suboptimal predictor are discussed briefly in the following section arnd

in greater detail in Chapter 6.

4.4. Performance Evaluation

The performance of the suboptimal predictor is summarized in Table 8 for one-frame ahead
prediction. using the last two frames received. The corresponding results for the fixed predictor are
given in Table 4, and for frame refresh in Table 7. The estimates derived via this pedictor are
shown in Chapter 6. I'rom an evaluation of the mean-square error and SNR values, we can see that
the suboptimal! predictor which uses the past stalistics 10 derive the estimale, matches the

performance cf the fixed predictor. The fixed predictor is seen to give better criterion va'aes than

S
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Tte frere relresh in almost all cases However, subjective quality is seen te be less acceptable than
' the e predictor. There does not appear o be a significant advantage of using this technigue over
rame retiash which does rnot requite any computations. For the adaptive predictor case. if we czn
~. “nc a cemputationel solution to the problem of inverting an extremely ill-conditioned matrix, then
[ ] "he revuits are expected to be betier than what the fixed predictor provides. In situations where a

Jdirect pseudoinverse algorithm produces unusable restored images due to the ill-conditioned natue

< of ire problem, cne approach suggested in [12] is 1o apply the SVD technique to both row and
- ‘

- column matrices separately. The use of this approach for reconstructing the images merits further
-"

< :nvestigation and 1s a topic for future research in this area.

"

Frf‘h I“

‘ﬁ. R

1
v+ te

-

LJ
o




44

’d'u:'-""

! CHAPTER 5
h
e .
« APPLICATION OF MOTION ESTIMATION FOR IMPROVING THE ACCURACY
kA
y OF FRAME PREDICTION
: *
4 £
o :
X 5.1. Introduction
t". A large number of applications requiring image processing involve images of moving objects.
For example, in our application of satellite image processing for rendezvous and docking, the
!
n
s scenario is characterized by both a moving target as well as a moving camera. In such cases, the ‘
nonstationarity of the images renders the image prediction a more complicated process. To
3 ' . . .
W accurately predict the image data in advance, one must estimate and account for the interframe
iy ;
$ motion. A number of researchers have addressed this issue of determining the motion of an object
5 from a sequence of images. Motion compensation can be thought of as a filtering process where the
-, , o A . , , :
", interframe motion is considered a noise. To the extent that the signal and noise have different
<
b power spectra. one can filter the noise representing the motion. For a stationary random process.
b this could be done via Wiener filtering. However, scene dynamics cannot accurately be modeled as
[
P :
g a stationary process. Hence. one must look for alternative means of motion compensation in the
2
. case of video images.
o . . . . C
o Dubois and Sabri [13] apply temporal filtering to detect that part of the image which is
0
.
2 nonstationary between frames, and use motion compensation to reduce the noise in image '
+
¢
W
sequences. Bowling and Jones [14] use a two-step displacement procedure to determine pixel
1
- . . . . .
-. displacements between frames. Broida and Chellappa [15] give a recursive estimation procedure for
L)
e, . . . . .
‘S determining object motion parameters from a sequence of images. In our work, we applied the
»)
] algorithm presented by Jain and Jain in [16] for measuring the displacement between consecutive
w'n’
; , . . . g
‘: frames in integer number of pixels. There are algorithms available to measure the pixel i
e
5 displacement with subpixel accuracy. Limb and Murpky [17] present such an algorithm for 1
“ g
. measuring the speed of moving objects from TV signals; Cafforio and Rocca suggest an algorithm
- for measuring small displacements in television images in [18]. The algorithm proposed by Jain !
N :
\
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and Jain entails dividing the image frame into subblocks and applving a 2-dimensiona] directed
search procedure 1o find the displacement which optimizes a certain criterien. In cur application,

the oplimiza.icn criterion is chosen as the mean- square errer between the correspending biocks of

=y

ha consecutive frame-. This is consistent with the critertz used for a comparison of the fixed and |
adaptive predictor results. This displacement is applied to the frame estimate to improve the

accuracy of prediction. The details of the algorithm are summarized in the following section.

5.2. Moticn Estimation

Jain and Jain {16] give an algerithm for measuring the interframe motion for digitized images.
This procedure makes use of the fact that in practice, a large part of the motion in a scene cun be
approximated by piecewise translation of several areas of a frame. The procedure consists of
segmenting an image into fixed size, rectangular blocks. It is assumed that each of these blocks is
undergoing independent translation. Then the rotation and zooming, etc.. of larger objects in the

scene are approximated by a piecewise translation of these smaller blocks.

We used 32X32 subblocks consistent with the block sizes used for other algorithm
computations. Let U be an NXIN size block of a given frame in a sequence. Let V be an
(N+2p)x(N=2p) size subblock of the consecutive frame cf the sequence, centered at the same
spatial location as U. Here. p is the maximum displacement allowed in either direction in integer
number of pixels. A mean distor:ion function. the mean-square error between U and V. is used as
the criterion for determining the direction of minimum distortion (DMD) between the two frames;

in other words. the displacement D that minimizes the mean-square error bet'ween U and V.

NN
) :
D(i.j) = -;—- 2 2 glu(m.n) —v(m+in+j)). —-p<ij<p. where
: m=] =1

2(x) = x" :orresponds to the mean-squere error between U and V. In general. g{x) can be anyv

pusitive and increasing function of x. We use the mean-square error criterion since it is consistent

with the performarc: measures ured in ithis work. Also, this allows us to obta.n results about
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improvement in frame prediction in mean-square error (or signal-to-noise ratio) terms.

The following assumption is made about the mean distortion functien. If D(q.) = min{D(i.j)} a
ij

then for m = i—q . n = j—/, the functions

\"2
o

Dy(im!.In1)=D(i,j)—Dygl). m 20, n

D,(im!.In1)=D(1.j)~Dyql). m 20, n

VA
(@]
x

Diy(Imi,In1)=D@G.j)—=Dyql). m<0, n<0 !
D,(Im!l.Int)=D(@,j)—=Dyql). m <0, n=0
where | -1 represents the absolute value. The above assumption means that the distortion function

increases monotonically as we move away from the direction of the minimum distortion.

With the above assumption. the algorithm [16] uses a 2-dimensional directed search method
for finding the DMD. The search consists of testing five locations in a frame at a time and
successively reducing the area of search until the plane of search reduces to a 3X3 block. In the
final step, all nine locations are searched to find the DMD and the minimum mean-square error.
The DMD and the minimum mean-square error for the entire frame are obtained by averaging over

all subblocks.

The algorithm is as follows:

For any integer p>0,

=y £33

NP)=1{G.j) . -p<ij<p)

M(p) = {(0.0), (p.0) . (0.p) . (—p.0) ., (0,—p)} .

Step 1: (Initialization) e

, D(i.j) = 0. (i.)) €N(p)

- &

n" = [log,p). [ ]isa lower integer truncation function

7

n = max{2,2" ')

- ON

g=L(=0.

4.
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Step 20 M(n) — Mia,

Step 3: Find (1)) € M'(») such thet Diitqg,j+{) is minimury 1f i=0 and j=0. go 1o Step 5
otherwise, go to Step 4.

Step4: g < g+i. = 4j: M(n) — M{n) — {—~i,—j); go 10 Step 3.

Step 5. n— /2 If n=1, go 10 Siep 6; otherwise, go 1o Step 2.

Step 6: TIind (i.j) € N(1) such that D(i+q.j~l) is minimum. The DMD is then given by

q—q+i,.{—1+]

The procf of the algorithm can be found in [16].

5.3. Performance Evalvation

The above algorithm is used tc derive the displacement between the estimates derived by th

[¢]

fixed prodicior algorithm and the actual frames. The results for some of these estimates are
tabuiated in Table 9. The improvement in the prediction is apparent from the reduction in the
MSE and the corresponding increase in the SNR. It is shown that an improvement of

approximately 2 dB is obtained when we ccmpensate for the motien.

We find that even though the displacement measured matches well with the actual
d:splacement un a subblock basis. the approximation involved in measuring the displacement in
integer number of pixels Jegrades the accuracy of the overall displacement when averaged over the
erntirz image. The displacement algcrithm can be applied to the entire image without too much
computational burden. However, we apply it ta 32X32 blocks for consistency with the other
resulis. It is obvicus that wnere averaging 1S expecled cver many subblocks, we reguire an
a:gerithm ihat guves the displacement with ractional pixel accuracy. The works of Limb and
Murpk: [17] and Caffurio and Rocca (18] are concerned with the problem of measuring small

dispiscements in leievision images.

In pract 22, {or ine purpese of or-line motion comyensation, we would estimate the

interizanme dizplacement between the wo most recently rec.:ved frames and aprly it to the
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Table 9. Effect of Motion Compensation on Interframe Predicticn
One-Step Ahead Prediction

DESCRIP- BLK # WITHOUT MO- WITH MOTION IMPROVEMENT OVERALL DIS.
TION TION COMPEN- COMPENSATION IN SNR PLACEMENT
SATION
MSE SNR MSE SNR
1 18.6 35.4 6.7 39.9
IMAGE 2
2 8.8 38.7 6.8 39.8
FROM 2.8 (-2,-4)
3 14.2 36.6 8.5 38.8
IMAGE 1 3 5.5 20.8 2.7 35.3 |
1 40.0 32.1 19.2 35.3 '
IMAGE 3
2 15.1 36.3 9.6 38.3
FROM 2.1 (3,-1)
3 48.0 31.3 34,7 32.7
IMAGE 2 4 11.3 37.6 7.23 39.6
1 54.0 30.8 29.1 33.5
IMAGE 4
2 14.6 36.5 8.7 38.8
FROM 2.3 (0,-2)
3 42.4 31.9 27.9 337
IMAGE 3 4 [ 9.6 38.3 6.5 40.0 {
1 57.7 30.5 21.1 34.9
IMAGE 5
2 16.7 359 83.7 28.9
FROM 3.0 (-1.4)
3 37,5 32.4 24.5 34.2
IMAGE 4 4 10.0 38.1 6.5 40.0
1 | 166.0 25.9 84.9 28.8
IMAGE 6
2 | 227.0 24.6 94.3 28.4
FROM L 3.2 (1.0)
3 | ss5.8 30.7 34.2 32.8
IMAGE 5 3 | 54.2 30.8 25.0 34.2
1 71.9 29.6 36.8 32.5
IMAGE 7 i
2 | 121.0 27.3 46.5 31.5
FROM : 3.4 (1,-27
3 | 46.0 31.5 22.9 34.6
IMAGE 6 4 T 20.3 35.2 10.3 38.1
! 1 87.4 28.7 43.3 31.8
IMAGE 3
2 193.0 25.3 81.7 29.0
FROM ; L 3.1 1.1
3 | 69.3 29.7 44.5 31.7
=@ IMAGE 17 4 252 34.1 13.3 36.9 i
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' E Table 9. (Centinued) Fffect of Mction Compensation on Interframe Prediction
o Two- and Three-Step Ahead Prediction
4.4

[ !

5: | DESCRIP- BLK # WITHOUT MO WITH MOTION IMFROVEMENT | OVLKALL  DIS |
- | TION TION COMPEN- COMPENSATION IN SNR PLACEMEN] ;

'. t:: | SATION i
b 4 i MSE SNR MSE | SNR '
£l : ! 41.2 32.0 18.4 | 355 j
. & | IMACE 3 | |
. iy | 2 15.0 36.4 6.8 39.8 ‘
el - | FROM 2.6 (2,1 ;
K ? 3 57.0 30.6 33.5 32.9
i | IMAGE 1 [ 4 13.3 36.9 8.2 38.2
Ny O ! i1 46.7 314 20.9 35.0

! IMAGE 4 | r

. | 2 14.8 36.4 10.8 37.8 '

B2, :)_' | EROM 2.7 (1,-3.
ood | 3 89.4 28.6 50.4 31.1 !
2 | IMAGE 1 4 15.7 | 36.2 10.0 ' 38.2 :
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reconstructed frame. A better result is expected when we use displaced frames as opposed to the
actual frames for deriving both fixed and adaptive predictors. Since the displacement algorithm can
be applied to the entire image, an on-line motion compensation for an adaptive prediction appears

to be feasible and computationally simple. These results are discussed further in Chapter 6.
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CHAPTER 6

DISCUSSION OF THE SIMULATION RESULTS

= B
?
4 5

st
. In this chapter, we discuss the results obtained from the fixed and the adaptive predictor
= P p p
e ::_,
;_: o algorithms. As described in Chapter 1, in order to demonstrate the performance of the algorithms,
~;. -2. (: we use a set of § frames from a video tape of a spacecrafi-to-spacecraft docking simulation. Figure
;‘0'0 2
DA 8 shows the 8 frames. These frames are not successive frames of the video tape with the typical
o4 $ P yP
. o4
0.. <
i > frame rate being 30 frames per second, but were taken at different stages in the docking. We
i seiected framaes rep-e:>nting far-, mid-, and close-range in order to determine the robustness of the
'
oA o, . . . . .
N approaches for different situations. For example, a change in the camera azimuth or elevation
) -1‘: .
5.. o introduces new and, therefore, unpredictable area due io the presence of unmodeled dynamics. The
B4 P
. first 3 frames represent the far-range. The zooming effect is present between images S and 6. In
P
F..(I -,-.
PN ractice, however, a remote pilot can expect successive frames with small interframe displacement
et E P P P
w
o . . . .
A nr due to the very small velocity of the spacecraft in the docking phase. Hence, the results obtained
Aad3 n’ in this work represent conservative estimates.
0
.‘".. ‘-'
SRS The results of the fixed pradictor for up to 3 steps of prediction, and the next frame pradicticn
P2 % P P p F P
H _-“‘1
2]

using one, two, and three of the most recent frames are summarized in Tables 1-5 using the criteria

'.L-
o

N defined in Chapter 2, namely, MABSE, MSE. % NMSE, and SNR. The corresponding pictures of the
TR . _— |
) :_, o~ reconsiructed images are shown in Figures 8-13, respectively. In some cases, we present only the
bRy . . . .
! first picture of the sequence to limit the total number of pictures. but the analysis was carried out
- g
IO for all cases in all categories and the results are summarized below the figures to give an idea of the

relative subjective merit of the other estimates. For comparison, the results of the frame rafresh

L}
r S Y
. i
4 a2 a & &

v

“~ -

" . . . . . N Ll . «
® 2- approach of prediction are summarized in Tables 6 and 7 for one and two steps of prediction,
4
w7 . . . . . - . L

L respectively. The side effects of processing the images in subblocks cause minor degracation in the
5-\:- g
o reconstructed picture quality. mainly in the form of a border eTect (more noticeable in the disc
S
A
5 u towards the right). This is caused by the partitioning of images into 32x32 subblocns fo:
T , ,

Y proces<ing and thereafter pasting the processcd tlocks to obtain the complete .mage. On the
ORI
‘N

AL O

n. ,M‘ﬁ. kY _.';... PG 5 “n **.' o t' ‘- -"':‘l
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Ficure 8. Imuge seguenc? ~epresentin », spacecraft docking scerario
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Figure 9. (continued) Next~frame prediction via fixed predictor technique. The resulting images
and the error between the original and the reconstructed frame represented by the
signal-to-noise ratio (SNR). (e) Image 6 from Image 5. SNR = 27.1 dB. (f) Image §
from Image 7. S\NR = 28.4 dB.
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Two-frame aheacd prediction via fixed predicior technique. The resulting image and the
erro; between the original and the reconstructed {rame represented by the signal-to-
noise ratio (SNR). Image 3 from Image 1, SNR = 33.1 dB.

Note: SNR values for the cther images are as foliows: Image 4 from 2. SNR = 31.7 ¢B:
Image 5 from 3, SNR = 32.3 dB; Image 6 from 4, SNR 27.1 dB; Image 7 from 6, S\R =
26.1 dB; lmage 8 from 6. SNR =27.2 dB.
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Figure 11. Three-frame abead prediction via fixed predictor technique. The resulting image and
the error between the original and the reconstructed frame represented by the signal-
to-noise ratio (SNR). Image 4 from Image 1, SNR = 31.9 dB.

d @

e

Note: SNR values for the other images are as follows: Image S from Image 2, S\R =
31.3 dB: Image 6 from Image 3. SNR = 27.1 dB: Image 7 from Image 4. SNR = 26.5 dB:
Image 8 from Image 5. S\NR = 24,9 dB.
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Figure 13. (Continued) Next-frame prediction via fixed predictor technique using last three
frames received. The resulting images and the error between the original and the
reconstructed frame represented by the signal-to-noise ratio (SNR).

(d) Image 7 from Images 6. 5, and 4, SNR = 28.5 dB. (e) Image 8 from Images 7. 6, and
5.SNR =279dB.
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mMONIloT, We can measurs that distance to be exectly 32 pixels wide, This, however, does not make

L

the image unacceptable.

From an objactive evaluation of the fixed prediclor versus frare refrssh, we can infer that the
fixed predictor performs better than the frame refresh in almost @il cases. However, the subjeciive
gquahty of the reconstructed images is such that there dees not seem 1o be a vignificant advantage of
using this predictor with its attendant computations. The significant limitation of the fixed
predictor is in those situations where the next frame has new and. therefore, unprediclable
information. The structure of the model chosen in Chapter 3 does no® allow us to compensate for
such physical phenomena as tilting or pan, which introduce rew information. This is obvious from
the lower criterion values and poor quality cf the estimates when predicting certain images
compared to predicting others. For example. the estimate of image 6 {rom 5 is less accurate
compared to the other estimates. When we apply the displacement-measurement algorithm
described in Chapter 5 to the estimates, we find that improvements in SNR of the order cf
approximately 2 dB are achievable. The results are summarized in Table 9 for a set of cases. This
is a significent gain since the results thus cbtained are approximately 3 dB better than those
available with the frame refresh technique. The displacement compensation procedure assumes
that over a short sequence of frames, the interframe dispiacement can be assumed constant. Then,
for the preciction, we would use instead cf the actual frames, frames displaced by ti:e same
amount as the displacement between the preceding two frames. In this work, we used only aciual
frames. Here, it is appropriate to point out that an algerithm that measures frame displacement
with fractional pixel accuracy is required to give an accurate estimate fer the ‘mage when averaged
over ali its subblocks. Otherwise, the approximation over individual subblocks makes the overall
estimate iess eccurate. In the specific application that we are considering. namely, that of sateilite
rendezvous and docking operation, the scene is charactlerized by very siow motion which would
maxe the interirame displacement considerably smaller than what we see here. As mentioned

before. the frames are not successive frames from the tape. but were Jeliberatelv chose: to “e

several frames apart. In eithe: case, the algorithms are not very complex. henc. an on-line
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'E'\. movement-compensated prediction appears to be feasible and practical. This area requires further
:;:' investigation as it is expected to give better visual results than what we have obtained from the
;'i:' fixed predictor.
£
' 5 Another conclusion that we can draw from an evaluation of the estimates, and the tables
; . summarizing the criterion values, is that one-step ahead prediction almost always performs better
‘f: than two- and three-step ahead predictions in that order. Where the interframe motion is small,
”,
‘:: e.g.. between images 1 and 2. the prediction is more accurate than in the other cases (Figure 9). An
g
a evaluation of the results of the two- frame ahead prediction (Figure 10) shows a good picture with
‘: an attendant SNR value of 33.1 dB. Three-frame ahead prediction does not appear to be as good as
:_;: the other two (Figure 11). A subjective evaluation of Figure 12 (next-frame prediction using last
e two frames received) shows that the prediction of image 3 from 2 and 1, image 7 from 6 and 5, and
;:'; image 8 from 7 and 6 are the acceptable ones. This again appears to be a result of the interframe
)‘: displacement. There also appears to be some duplication of feature points, more apparent in some
1.‘ ‘ cases than the others. This is because prediction using the last two frames received can be thought
B
"J‘ of as a projection of the last two frames onto the next frame. A change in the location of certain
< '
\: feature points between consecutive frames results in a shadow effect on the frame estimate. The
-
) results of the next frame prediction using the last three frames received is the worst in terms of the
:'."3 visual perception of the scene. The blurring which makes the target interpretation almost
'J: impossible is caused by that portion of the image which is nonstaticnary. This can be inferred
. from the fact that in that class, the acceptable estimates are those of image 8 (from 7, 6. and 5) and
Dy image 7 (from 6. 5, and 4). In the original frame sequence, the most significant interframe
::: displacement is between images 2 and 3, which is why the other estimates seem so blurry. In
e
@ almost all the cases, the SNR is approximately 30 dB.
- The results of the suboptimal adaptive predictor are summarized in Table 8. The
hY
:'. corresponding pictures are presented in Figure 14. From the objective evaluation, the suboptimal
:.‘. predictor matches the performance of the fixed predictor which. as we have seen, outperforms

-
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TIMAL ADAPTIVE PREDICTOR
6 FROM IMAGE 5 & 4. ~ |

(d)
Figure 14. (Continued) Next-frame prediction via a suboptimal adaptive predictor technique l
using last two frames received. The resulting images and the error between the origi-

P nal and the reconstructed frame represented by the signal-to-noise ratio (SNR).
o (c) Image S from Image 4 and 3. SNR = 32.1 dB.
e (4) Image 6 from Image 5 and 4, SNR = 27.0 dB. '
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iy OF frame refresh. liewever, the approsimation of the inverse trensiormation usaed in the derivation of
fy 'l
L]

the predictor introduces noise in the image recovery which is seen as the blurring effect. The only

s

accertable estiniate 12 thiy category is that of imiagz 3 based on imaeges 2 and 1. When we displov
AN ;5 - o
o g. he original imag:x 1, 2. and 3. we find that the relative displacement between 1 and 2 :zitches
oy
5 Alacel o ith tha f 2 and 3 This suggesis that in cases wher 1 oo : £ owrideocana
y Ciosely with that of 2 and 3 This suggesis thatl in cases where the assumption of wide-sanise
it stationarity is valid, the prediction is indeed fecsible and of an acceptable quality. As deseribed in
!‘"' - p q
0’.:0
N o Chapter 4, un investigation of the solution of singular matrices is in order since that is expected 1o
l‘.. o> =]
‘..:
[ X' . . . . . . - . . . \-
improve on the results obtainadle with a fixed predictor as well as a suboptimal adartive predictor.
" :3
‘,-"_,." R The aim of this work is to investigate il it is realisiic tc model the scene dynamics as a
L]
g
‘z,)\' o discrete-time lincur stete vector model, and estimate the model structure which is otherwise either
2 T
completely unspecified or iil-defined. We do ihis by either exploiting some inherent properties of
T
e the images by trying to estimate the dynamics via an analysis of the availatle information. In
$* L
-":; either case, the subjective guality ¢f the reconstructed estimates is such that the ccmputations
| . .
' ﬂ involved ir. deriving the predictors may not be justified. However, in some other cases, such as
;:.‘
' . . . B .
Yo movement-compenszaied predicto.s, it may be pcessible to obtain far better results in which case the
o ,.3 t 2 P
I
$ . . .
N advantage over frame refresh may warrant the added computations. This area merits further
"WV
J [ investigation.
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CHAPTER 7

CONCLUSIONS

The problem of dynamic estimation of unknown, time-varying parameters using a priori
information is considered. The unknown parameters are the image pixel intensities of the next
frames of a video sequence. Also, the dynamics of the model are not available and must be
estimated. The measurable data are the pixel intensities of the preceding frames. We approach the
problem by first representing the image dynamics as a linear state space vector model where each
frame is represented as a state vector of dimension N{ = N;XN,), sampled at discrete instants. We
then attempt to use the a priori information to estimate the dynamics of the model and to derive an
on-line adaptive estimation of the unknown parameters. In the fixed predictor case, we use the
inherent adjacent-pixel correlation of the image data for deriving the state vector model. The
intent of the work is to determine if it is realistic to model the image dynamics via these
approaches and if so. to investigate if it is possible to obtain a significant improvement over the

frame refresh technique which requires no computations at all.

We find that it is feasible to do an on-line prediction of the image data and if certain
conditions such as slow dynamics are satisfied, then it is possible to match the performance of the
frame refresh technique according to the objective criteria. The conditions assumed are realistic in
the context of teleoperator-controlled remote piloting application which is the main motivation for
this work. It is also shown that in the case of slow dynamics, we can improve the criterion values
by predicting the interframe displacement and compensating for it. However. from a subjective
evaluation of the results of the fixed and adaptive predictors versus the frame refresh, we find that
there is not a tremendous improvement over the frame refresh technique. The latter is attractive
since it does not require any computations. We also find that a significant limitation of the fixed
predictor approach is in those situations where the scene is characterized by rapid movement which
introduces new information in the form of unmodeled dynamics. This indicates that the pixel

correlation by itself may not be sufficient to model the image dynamics. In such cases, the use of
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: S an optirtal adeplive predictor would be in order provided o computationally simple solution ov
\
0 - SR . i .
B ' approximation to the problem cof inverting singular matrices could be found. The subeptiraal
1 predicier used in this case gives good critcrion values. However, the matrices representing the
)
AR image pixel intensities are seen 1o be extremely ill-conditioned muk:ng them singular. Even z
KN W
N , generaiized inverse sciution fails 1o provide acceptabile estimates. This is because the approximation
. 2 used for the generalized inverse of the ill-conditioned matrices greatly degrades the visual quality
3
* :; cf the images by effectively increasing the contribution of the noise which represents the
e
Xy T o _
unmcdeled dynamics.
N & g
W From ths video sequence that was analvzed and the specific predictors used in this work.
;.‘ <y appears that the improvement over frame refresh is not significant enough to warrant the
K
computations rzquired for these approaches: this does not preclude the possibility cof obtaining
L)
VR o : . - : . L
Ve significant improvenient when using other approaches. Two areas that merit further investigation
W, e
N in this regerd are as follows:
Movemeni-compensated on-line prediciion appears to be a promising approach. Our work in
o]
TERY Chapter 5 shows that it is possible 10 improve on the criterion values by estimating interframe
"
L3
s’z - . . . . . N . . ,
" displacement and compensating for it. It is expected that if one were to use the displaced frames
l instead of the actua! frames for image drta prediction and thus account for the interframe
[\ ‘w
W “ displacement, then tha predicled frames would be more accurate than what one couid get from the
v
o " frame refresh. This is a topic for fuiure research in this area.
L]
o Another area which merits furtaer investigation is the probliem cf the ill-corditionied nature
Xy .
D) of the image processing matrices. Andrews and Patterson [19] and Huang [20] suggest an approach
§ .
&y for solving this problem where a direct pseudoinverse gives unacceplabls restored images due 10 the
q
;:; » ill-conditicnzd nature of the matrices. This approach involves represer.iing the image model as ¢
"W T‘:‘
7::: serarable space-variant model and consists of applying SVD to both row and column matrice
)
N
) E separately. This 1s equivalent to decomposing the images into eigenimages and reconstrucuing the
N image by ::ziectively discarding cerlain eigenimages. This area req.ires further investigation as an
v
h ! - ' . .
by apphlication of | weralized inverzes for image nrocessing svstems.
P Y
‘H
.
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APPENDIX A

SUPPORTING SOFTWARE

A.1. Software for Fixed Predictor and Data Manipulation for D/A Conversion

nToooo0nNnaoTo000O00000000000000A~N

(]

}—

program pred

PURPOSE:
This routine computes the next frame of the video
sequence using the last frame received and prepares
the frame estimate for D/A conversion by converting
it from-real to binary data.

ROUTINES CALLED: MTXMLT

LOCAL VARIABLES, INCLUDING DIMENSIONS AND DESCRIPTION:
X(1:32,1:32), ¥(1:32,1:32) - input matrices which hold
32x32 block of Image 1 and Image2 respectively
after converting integers to real numbers.
M(1:32,1:32), N(1:32,1:32) - input matrices which hold
32x32 block of Image 1 and Image2 respectively after
converting binary numbers to integers.

XEST(1:32,1:32) - matrix containing the estimate derived.
PHI(1:32,1:32) - matrix representing the fixed predictor.

Datal(512), Data2(512), Xsdata(512) - 512 byte arrays to
hold one record of imagel, image2 and the estimate
respectively.

Xdata(512) - integer array to hold the estimate data
after real to integer conversion.

XSl.dat - XS8.dat - files to hold the reconstructed
image as it is being created column- by- column.

implicit real*8 (a-h,o-2)
implicit integer*4 (i-n)
byte datal(512)

byte data2 (512)

byte xsdata (512)

integer *2 xdata(512)
integer *4 M(1:32,1:32)
integer *4 N(1:32,1:32)
real *8 PHI(1:32,1:32)
real *8 X(1:32,1:32)

real *8 XEST(1:32,1:32)
real *8 ¥(1:32,1:32)
character *20 Imagel, Image?2

write (6,*) 'Type filename.typ for the first file.'
read (5,1) Imagel

format (A)

write (6,* ) 'Type filename.typ for the next file

+ of the sequence.'

read (5,2) Image?2
format (A)

Open all the units
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o Ex,
] i
a
S arcla ( ) 11 File= Tma 3 o= ! Tt -y f . Tt

. copen tunit= file= ‘magel, status='old OrmE untormattald
. - recordrvge~'fixed‘, recl=128)
? open (unit=13,{1le= Imagel, status='old',form="'unformacted',
&; o - recordtype="fixed"', recl=128)
%2 g. cpen (unit=12,f1l :fxsl.da:',statub:'*o”' form="yuricrmarted’,
N i - recordtype="'fixked', recl=3aj
iL open (unit=14,%ile="xs2.Cat',starus="new' ,form="unformasica’,
- + recordtype="'fixed', reci=16)
W4 X oLEE P
e, cpen (unit=15,file="xs3.3at’',statuvs="new', form="unformntted"’,
it + recordtype="fixed', recl=21)
§J ;ﬁ open (unit=16,file="xs4.dat’',starus="new',form="unfornacred",
oY + recordtype="'fixed', recl=32)
’ oven (unit=17,file="xs5.dat',status="new',form='unformaczed’,
sl + recordtype="{ixed', recl=43)

5: open {unit=18,file="xs6.dat’',status="new', form="uvnformatted’,
Wi + recordtype="'£fixed', recl=48)
%ﬁ . open (unit=19,file="'xs7.dat',startus="rew', form="unicormarzed’,
we ;f + recordtvpe='£fixed', recl=56)
o | open (unit=20,file="xs8.dat',status="rew',form="unformns-ted",
G + recordtype="fixed", recl:64)
‘? . c Initialize the phi-matrix
%2 . do w=1,32
g do 1=1,32

Wl phi (k,1) = 0.0
o h end do

o8 end dq
;5 . cSet the phi- matrix
g - do 1=1,32,31
Ao do k=1,4
2 pni(l,1) = 1,0/ 4.62
D) [; 1f ((i+k) .le. 32) then
e, phi(i,l+k)= (0.96 ** k) / 4.62
j& end If
N if ({1-k) .ge. 1 ) then
Pcr pni(l,l-k) = (0.96 ** k) /4.62
. ' end if

. end do
5 Eﬁ end do
'I‘ -
T 2o 3=2,31,29
Bl do k=1,4

» pni(i, i) = 1.0/ 5.58
-@: f ((3+7) Jle. 32) then
TN chifi,j+x)= (0.96 ** k) / 5.58
I enc Lf
S i ({i-x) .ge. 1 ) then
il oRilj,i-k) = (0.96 ** x) / 5.38
DS and 1f
.- end Zc
I end <o

(rir
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do 1=3,30,27
do k=1,4
phi(i,i) = 1.0/ 6.5
1f ((i+k) .le. 32) then
phi(i,i+k)= (0.96 ** k) / 6.5
end if
if ((i-k) .ge. 1 ) then
phi(i,i-k) = (0.96 ** k) / 6.5
end if
end do
end do
do j=4,29,25
do k=1,4
phi(j,j) = 1.0/ 7.38
if ((j+k) .le. 32) then
phi(j,j+k)= (0.96 ** k) / 7.38
end if
if ((j-k) .ge. 1 ) then
phi(j,j-k) = (0.96 ** k) / 7,38
end if
end do
end do
do 1=5,28
do k=1,4
phi(i,i) = 1.0/8.23
if ((i+k) .le. 32) then
phi (i,i+k) = (0.96 **k) /8.23
end if
if ((i-k) .ge. 1 ) then
phi (i,i-k) = (0.396 ** k) / 8.23
end if
end do
end do
C Read Imagel
npin = 512
npout 32
nrout 32
o Set the initial values for performance measures
suml
sum?2
sum3
sumd
sumS
sumé6
sum 7 = 0.0
sum8 = 0.0
Y snr = 0.0
2 o Start processing column 1l: 8
!ﬂ do 10 npskip = 0,224, 32
c Start processing a 32x32 block in the first column
do 20 k=1,8

OO OOO0O
QOO OO0O
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“ ‘ z Read next nrout (=22 in this case) records!
i do i = 1, nrout
’ read (11) (datal{3j), j=1,npin)
& do j = 1, npout
"s M(1,7) = jzext( datalinpsxip-3i) )
: X{i,3) = dflotj( M(i,3) )
- N end do
N o end do
! - Cros%—rheck
™ -2 write (6,3) K,X{(1,1)
@ R : format (/,1lx,'BLOCX #',:14,', X{1,1)=",F9.3)
) call mtxmlt (phi,b32,32,%X,32,32, XEST)
- o tart writing a 32x32 block at a time, i.e.,
- :j z npskip+1 : npski ip+32 after doing real to integer
ot C conversion (integer data written to binary files!)
. do kp=1,32
-~ if (npskip .eg. 0) then
L . go to 303
A else if (npskip .eqg. 32) then
:g s’ read (12) (xsdata(3), j = 1,npskip)
A else if (npskip .eq. 64 ) then
§ read (14) (xsdata(j) j=1,npskip)
R else if (npsk.p .eg. 96) then .
. . read (15) (xsdata(j), j = 1,npskip)
‘ﬁ_ else if (npskip .eqg. 128) then .
o read (le) (xscdatalj), ; = 1,npsxip)
O 1y else if (npskip .eq. 160) then
N read (17) (xsdatalj), j = 1,npskip)
ny eise 1f (npskip .eqg. 192) then
!: read (18) (xsdate(j), j = 1,npskip)
O else if (npskip .eg. 224) then
o read (19) (xsdata(3i), i = 1,npskip)
fQ s end 1if
(W z
e 303 do 1=1,322
T «datal{npsrip+l) = ilidnnt( xestikp,1))
e T if (xaara(nps&lp*l3 ge. 127) then
3: B xdatalnpskip+l) = (.va al{nps=xip+l)) - 2535
K. end 1£
- xsdata {(npskip+l) = xdatalnpsxip~1l)
YN and cdo
] 1f (npskio .ez. J) then
N write (12) ( xsdatai(i), J=1,(npsxkip+22) )
SN else if (npskip .eg. 32) =-hen
D write (11) ( xsda=-a(3j), J=_,(npskig=-321
e else 1f 'npskip .eq. 64) then
bt write (19) ( xsdaralj), i=1,fnpskip+12) )
R - 2lse f (rpskip .eg. ©3) rthen
K, write (16) ( xsdatalil. =1, npskip+r2l) 0
o v else if (npskip .eg. .28 ~h=n
,$ N write (17 vsdaralj), =L,inpsxip~22) 0
&
o "4
o
~
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@ else if (npskip .eq. 160) then
ot write (18) ( xsdata(j), j=1,(npskip+32) )
A else if (npskip .eq. 192) then |
‘ﬁ; write (19) ( xsdata(j), j=1, (npskip+32) )
b else if (npskip .eq. 224) then
. write (20) ( xsdata(j), j=1, (npskip+32) )
ALY end if
e end do
uﬁ c Cross-check.
o write (6,4) xest(l,1)
o 4 format (1lx,'XEST(1,1l) =',F9.3 )
c Now read IMAGEZ2.DAT
V? c Read nrout (=32 in this case) records at a time!
) do i = 1, nrout
P read (13) (data2(j), j=1,npin)
b do j = 1, npout
P N(i,j) = jzext( data2(npskip+j) )
Y(i,j) = dflotj( N(i,3) )
Nl end do
o~ end do
o c Cross-check.
25 write (6,5) Y(1,1)
b 5 format (1X,'y(1l,1)=',F9.3)
1_ C Compute mabse, mse, % nmse and SNR.
¢ X do 1 = 1,32 i
b do j=1,32
‘ suml = suml + (dabs (Y(i,j) -Xest(i,j)))
sum2 = sum2 + ( Y(i,j) -Xest(i,j) ) ** 2.0
sum3 = sum3 + (Y(i,j) ** 2.,0)
end do
end do
c Close the loop for each 32x32 block (total 8).
20 continue
o After 8 iteraticns, close the loop for individual
o columns (total 8), i.e., npskip+l: npskip+32, and
c print the performance measures for each column
sumd¢ = sum2 / sum3
suml = suml / (1024 * 8)
sum2 = sumz / (1024 * 8)
sum3 = sum3 / (1024 *300)

write (6,7) suml, sum2, sum4, sum3

7 format (lx, 'MABSE=',bE9.3,1x, 'MSE=',E9.3,1x, 'NMSE=',E9.3,
+ 1lx, 'MEAN [IMAGE VAR. /100 =',El2.6)

o Reinitialize the performance measures for each

c column iteration

sum5= sumb5 + suml

sum6 = sum6 +sum?
sum,s = sum?7 + sum3
suml = 0.0
sumZ = 0.0
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sum3 = 0.0
sum 4 = 0.0
Close units 11,12,13 and r=open o order to

start reading reccrds f{rom the 1st rescrd.
rewind (11)
rewind (13)
if (npskip .eqg. 0) then
clcse (12}

ﬂ open {unit=12,file="xsl.det',status="'0ld"', form =
U + 'unformat:ed', readonly, recordtype="'filxed', recl=8)
else 1f (npskhip .eq. 32) then
"on close (14)
b; open (unit=14,file="xs2.dat' status:’old',form =
B + unto*wat*eo',rea aly, recordt)pe—' lxed', recl=16)
-~ else if (npskip .eq. 64) then
~ close (15)
- open (unit=15,file="xs3.dat',status="'0old', form=
+ 'unformatted', reacdonly, recordtype='fixed', recl=24)
o else if (npskip .eg. 96) then
& close (16)
open {(unit=16,file="'xst.dat',status="0old’', form =
o + 'unformatted',reacdonly, recordtype="'fixed',6K recl=32)
o else if (npskip .eq. 128) then
' close (17)
" open (unit=17,file="xs5.dat’',status="0ld"',form =
i + 'unformatted',readonly, recordtype='fixed', recl=40)
else if (npskip .eqg. 160) then
close (18)
open (unit=18,file="xs6.dat',status="'0ld', form =
+ 'unformatted',readenly, recordtype='fixed', recl=48)

else if (npskip .eq. 192) then
close (19)
open (unit=19,file='xs7.dat',status="o0old"', form =
+ 'unformatted',readonly, recordtype='fixed', recl=56)
else if (nps«ip .eg. 224) then
close (20)

R G

L=

end if
10 continue
i write (6,11) Image2, Imagel, Npskip
EN 11 format (lx,'THIS PROGRAM PREDICTS',A,' FRCM ', A ,
+ ' FOR A 256X32 BLOCK AFTER DELETING',I4,' CCLUMNS.',
2. + /,'FINISH=ZD PROCESSING THE FIRST 25€X256 IMAGE')
o SUM5 = SUM5S / 8.
@ SUM6 = SUM6 / 8.
SUM 7= SUM7 /8.

SUM8 = SUM6/SUM7

SNR = SNR + ((2385 **x 2,03)/ SUMo)
e SNR = 10.0 * dlogl?d (snr)

write (6,12) sumb5, sum6, sum?

e - e
(Crlele e
e &
.
(33

format (lx,’ 'TOTAL MABSZ=',Z29.3,1x, 'TOTAL MSE=',6E9.3,1x,
% + "MEAN IMAGE VAR./100 O”*? THEZ ENTIRE BLCCK =',212.8)
l'. wy ~
W - . -
I write (u, 13) sum8,snr
L, }

" 102 formas (1 s TCTAL MNMSt= ,E2.3,1X,"'SNR=",i6.3
enu

e
T
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N subroutine mtxmlt{mtxa,nrowa,ncola,mtxb,nrowb,ncolb,mtxc)

PURPOQOSE: ¢
This subroutine computes the matrix product of two matrices.
CALLING SEQUENCE:
CALL MTXMLT (MTXA,NROWA,NCOLA,MTXB,NROWB,NCOLB,MTXC) :
MTXA: (input) first matrix of product, maximum dimension 0
MTXA(1:32,1:32). '
NROWA: (input) number of rows in MTXA.
NCOLA: (input) number of columns in MTXA.
MTXB: (input) second matrix of product, maximum dimension
MTXB(1:32,1:32).
NROWB: (input) number of rows in MTXB. i
NCOLB: (input) number of columns in MTXB. v

o000 nNnao0n00n0o000n

2 MTXC: (output) resultant product matrix of MTXA times
Y MTXB, maximum dimension MTXC(1:32,1:32). t
ROUTINES CALLED: none. !
LIMITATIONS:
¥ The maximum dimension of the input and output matrices .
; is 32x32. A
} Kok ok kkok ok kokkkkkkkkkkk END OF pREF‘ACE e gk Kk ke ok ok ok ok ok ok ok ok ok ke ke ok ok kK ke ko ke ok ok ok ok ke ke
W implicit real*8 (a-h,o0-2z) .
implicit integer*4 (i-n)
real*8 mtxa(l:nrowa,l:ncola), mtxb(l:nrowb,l:ncolb)
: real*8 mtxc(l:nrowa,l:ncolb) ;
; if ((ncola-nrowb).eq.0) then X
;# if ((nrowa.le.32).and.(nrowb.le.32).and.(ncola.le.32).and.
> (ncolb.le.32)) then
do 100 i = 1l,nrowa
'@ do 200 j = 1,ncolb
K- mtxc(i,j) = 0.0
. do 300 k = 1,ncola ‘
y mtxc(i,j) = mtxc(i,j) + mtxa(i,k)*mtxb(k,j) i
300 continue
' 200 continue .
- 100 continue
. else
' write(20,9000) Q
4 end if R
; else '
write (20,9010) ncola, nrowb
A write (20,9020)
end if *1
3000 format (/,' dimension of one or both MTXMLT input',
> ' matrices are larger than 32x32.') '
> 3010 format (/,' mtxa has',i2,' columns; mtxb has ',i2, -~
4 > ' rows.')
) 5020 format (/,' matrix multiplication is not defined in',
" > ' this situation.")
K resurn
S end

p AL - P At - Caslp Lo s o Cn o KRR Pt (R G GUE IR TR
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A.2. Software for Interframe Displacement Estimation

O 0

OO0 00000000000000000000000O0

B!

program motion

PURPCSE: This routine computes the interframes displacement
tetween 2 frames of a video sequence using a minimum mean
square error criterion accoding to the algorithm by Jain
and Jain.

LCCAL VARIABLES INCLUDING DIMENSIONS AND DESCRIPTION:

XK(1:32,1:32), ¥Y(1:32,1:32) - input matrices to hold 32x32
blocks of images 1 & 2, respectively after integer to real
conversion.

M(1:32,1:32), N(1:32,1:32) - input matrices to hcld the
above cata after byte to integer conversion,

Bdata(512), Data(512) - 512 byte arrays to hold one record
of imagel and image 2,respectively, at any given time,

Sum(1:5) - array to hold the variances for a S-point search.
Sum2(1:9) - array to hold the variances for the final

S-point search.
Summ, Summ2 - working variables for the minimum variance

cver 5- and S=point search, respectively.
P, PK, NN - working variables.
Q, L and TQ, TL - working variables for the x,y displacement
over a block, and over the entire image, respectively.

VALI(1:5), VALJ(1:5) and VALI2(1:9), VALJ2(1:9) - arrays to
hold the x,y values for the 5- and 9-point search,

respectively.
Joodke gk ok ok gk ok koo ok ok ke ke ok ok sk ke ok ok ke ke ke ok ke ok vk ok ok ke ok ek sk ok ke ke sk sk ok bk ke ke ke ok Kk ke ke ok ok ok ok ke ke ok ok ke ok ok koK

implicit real*8 (a-h,o-z)
implicit integer*4 (i-n)

byte bdata(512)

byte data (512)

character *63 Infilel, Infile2
real *8 sum(l:5), sum2(1:9)
real *8 summ, summ2, tsum
integer *4 g, p, pk, nn, tg, tl
real *8 X(1:48,1:48)

real *8 Y(l:64,1:64)

integer *4 vali{(l:5)

integer *4 valj(l:5)

integer *3 wvali2(l:2)

intejer *4 valj2(1:9)

integer *4 M(1:48,1:48)
intecer *4 N(1l:64,1:64)

wrize (6,*%) 'Type Filename.type for the estimate file. '

Read (5,1" Infilel

write (6,*) 'What is it zhe estimate of? Type "Filena:e.typ"
~ for the =stimate file, '

Read "5,1) Tnfile2

formaz (A)




R
MOV
DA
R
i".
Y
MO0
$f§ c Initialize variables
: npinl = 256
Wi npoutl = 32
X nroutl = 32
R npi82 = 612
it tg=
*éﬂQ t1=0
- tsum = 0.0
;’;." C ’
Y do 20 npskipl = 0,224,322
X do 10 nrskipl = 0,224,32
::Q‘. e}
e c Open all the units
open (unit=11, file= infilel, status='old',
\{} + form="'unformatted', recordtype='fixed', recl=64)
é}& open (unit=12, file= infile2, status='old',
‘&j: + fcrm="unformatted', recordtype='fixed', recl=128)
A c
o npout2 = 0
' ,’ nrout2 = 0
| C For each 32x32 pixel sub-block in the 1lst image,
W c pick a 64x64 sub-block in the 2nd image centered
:qﬂ c at the same spatial location. In the corners
;fk c we would have only 48 pixels along one or both axes.
c
i If (nrskipl .ge. 32) then
o nrskip2 = nrskipl -16
f&:; else if (nrskipl .eq. 0) then
s nrskip2 = nrskipl
e end if
o
;&’ If (npskipl .ge. 32) then
iy npskip2 = npskipl -16
ﬁw? else if (npskipl .eq. 0) then
X . 2
e npskip2 = npskipl
sty end if
22 tgt
c
o If ((nrskipl .eq. 0) .or. (nrskipl .eq. 224)) then
Qd& nrout2 = 48
3¢ 3 else
Pt nrout?2 = 64
Ol end if
@ c
oY If ((npskipl .eq. 0) .or. (npskipl .eq. 224)) then
:q& npout?2 = 48
@4 else
! npout2 = 64
ary end if
s c
KON do i=1,48
il do j=1,48
R X(i,j) = 0.0

D)
¢ K3

R » Iy DO ' p 0L 4 ALAT YL (1.3 AU AOUT M RONOH0
b Bl LD O 0 (l OAD & X000 5 AN ML)
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Read Infilel.
First skip nrskipl records!
do i =1,nrskipl
read(11) bdata(1l)
end do
Read next nroutl records!
do i1 = 17, 48
read (11) (bdata(j), j=1,npinl)

k =1
do j = 17, 48
M(i,j) = jzext( bdata(npskipl+k) )
X(1i,3) = dflotj( M(i,3) )
k = k +1
end do
end do

Cross-check.
If (nrskipl .eq. 224) then
write (6,890) NPSKIPl, NRSKIP1l, X(17,17)
format (1x,'NPSKIPl1 =',6I4,' ,6NRSKI?l =',61I4,
end if

Now read Infile?2

First skip nrskip2 records'

do i =1, nrskip?
read(12) data(l)
end cdo
Read next nrout?2 rezords!
If ¢ nrskipl .eg. 0) then
nil = 17
else
nil = 1
erd if
niz = nil + nrout?2 -.

T

J‘O‘g?ﬂ'tl

O 0 P
i 't‘t'b‘ QErie, s



..\;:. , 1
e
1

LW 82
R
et
K

W
R
e If ( npskipl .eq. 0) then

. njl = 17
,ﬁ; else
"t‘ njl =1
Sy end if
LR nj2 = njl + npout2 -1
e -do i = nil, ni2
\) read (12) (data(j), j=1,npin2)
:,:A".: k =1
ﬂ\ do j = njl, nj2
bg N(i,j) = jzext( data(npskip2+k) )
et Y(i,j) = dflotj( N(i,j) )
B k = k +1

w end do
1& end do
fhﬂ c Cross-check.
o If ((npskipl .eq. 224) .and. (nrskipl .eqg. 224)) then
wine write (6,891) NPSKIP2, NRSKIP2, Y(nil, njl)
;ﬁ 891  format (1lx,'NPSKIP2 =',61I4,' ,NRSKIP2 =',I4,',6Y(1,1) =',F9.3)
. end if
f,ﬂ C Compute the variances for the 5-point search.
ot c
'\-}: nn = 8
e q=20

(X 1 =
e 3000 continue
ﬁmt vali(l) = 0
o valj(l) = 0

‘x$ vali(2) = 1 * nn
e valj(2) = 0
J vali(3) = 0

Vot valj(3) = 1 * nn
,? vali(4) = -1 * nn
e+ valj(4) = 0
o vali(5) = 0
MY valj(5) = -1 * nn

o

i 2020 continue

N do 2000 p =1,5
Yo sum (p) = 0.0
;fs k =0
:’!.l.- pk = O

On k= q + vali(p)
o pk = 1 + valj(p)
W o Variance = 1infinity, if 16 < i,j < -16, i.e.,
;35 c maximum pixel displacement is 16 pixels.
Sty If (( k .gt. 16) .or. ( k .1lt. -16) .or.
gt + (pk .gt. 16) .or. (pk .lt. -16) ) then

. sum(p) = 1600000.0
v else
o do 200 ml = 17,438

] = 17,48

WY do 100 nl




- M g o a i S dhia d o A as L

£

83

7 sum{p) = sum(p) + ( X{ml,nl) - Y(ml+k,nl+pk) ) ** 2
! ‘ 100 continue
. 200 centinue
" sumip) = sum(p) / (32%*2)
‘.:l X end if
" Ej 2000 end do
X c Compute the minimum variance
2005 continue
N p summ = 0.0
W summ = SNGL( DMIN1( dble(sum(1l)), dble(sum(2)), dble(sumi{3)),
i + dble(sum(d)), dble(sum(5)) ) )
% 3 c
m & c Find the minimum.
If (summ .eq. sum(l)) then
W g pg=1 )
e . else if (summ .eqg. sum(2)) then
.e pq =2
LI else if (summ .eqg. sum(3)) then
o ﬁ pg=3
else if (summ .eq. sum(4)) then
AT pg=4
[+ else if (summ .eq. sum(5)) then
:)" " pq:S ‘
2 end 1if
q = q + valilpq)
i i 1 =1+ valj(pqg)
> c
N If (pg .eq. 1) then
- go to 2010
kY, - else if (pg .gt. 1) then
B Jo to 2020
. g end if
ke 2010 continue
" nn = nn/2
s If ( nn .eq. 1) then
N go to 4000
i else if ( nn .gt. 1) then
, - go to 3000
o end if
:v’ 4000 continue
:5 ~ vali2(1l) = 0
o i; valj2(1l) = 0
' ¥ vali2(2) = 1
o valj2(2) =0
e vali2(3) = 1
SO valj2(3) = 1
5: vali2(4) = 0
‘. - Val]2(4) = 1
W vali2(s) = -1
valj2(s) = 1
3 : vali2(e) = -1
s § 7a1i2(6) = 0
st '
C..
‘ o
e
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400
500

5000
c
3005

vali2(7) = -1
valj2(7) = -1
vali2(8) = 0
valj2(8) = -1
vali2(9) =1
valj2(9) = -1
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Compute the variances for the final 9-point search, X
i.e., over -1 (=,<) 1,j (=,<) 1. ]

do 5000 p =1,9
sum2(p) = 0.0
k =0
pk = 0

k= q + vali2(p)

pk = 1 + valj2(p)

If (( k .gt. 16) .or. ( k .lt. -16) .or. ]
(pk .gt. 16) .or. (pk .lt. -16) ) then

sum2(p) = 1000000.0 v
else v
do 500 ml = 17,48
do 400 nl = 17,48 ;
sum2(p) = sum2(p) + ( X(ml,nl) - Y(ml+k,nl+pk) ) ** 2 ¢
continue .
continue
sum2(p) = sum2{p) / (32%*2)

end if

end do

Compute the minimum variance \

summZ2 = 0.0
summ2 = SNGL(

dble(sum2(3)),
dble(sum2(7)),

Find the minimum.

If (summ2 .eq.

pq=1l

else if (summ2
pq =2

else if (summ2
pg=3

else if (summ2
pq=4

else if (summ2
pPq=5

elseif (summ?2
pg=6

else if (summ2
pg =7

else if (summ2

) "i; * t (i l l" St i‘g’ﬁ ) D,. 0“ ) g‘i‘g ' r'( N X) ‘I’q P.Q “I \l \‘ k

.eq. sum2(6)) then

IS Ko

DMIN1( dble(sum2(1l)), dble(sum2(2)),
dble(sum2(4)), dble(sum2(5)), dble(sum2(6)),
dble(sum2(8)), dble(sum2(9)) ))

sum2(1l)) then

B =i
- "

.eq. sum2(2)) then

= §

.eq. sum2(3)) then
.eq. sum2(4)) then

.eq. sum2(5)) then

.eq. sum2(7)) then

.eq. sum2(8)) then

il o B O koo

¢
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pg=38
else if (summ2 .eqg. sum2(%)) then

pq=9
end if
q = q + vali2(pqg)

et
W n

1 + valj2(pq)
Again, limit the displacement to x,y (<,=) 16.
If ( (g .1t. (-1*16)) .or. (g .gt. 16) .or. (1 .gt. 16)
or. (1 .,lt. (-1*%16)) )then
sum{pg) = 1000000.0
g = q - vali(pq)
1 =1 - valjl(pq)
go to 3005
end if
tq = tq + g
tl = t1 + 1
tsum = tsum + summ?l

write (6,794) npskipl, nrskipl,nn,tq,tl,tsum
format (1x, 'NPSKIP1=',61I4,' ,NRSKIPl=',6I4,' ,nn
' TOTAL (SO FAR) DMD DIMENSIONS: q =',14,' ,1
' ,MIN (SO FAR) D(q,l) =',6F10.3)

END DO

‘14,7,
', 14,7/,

ol

write (6,993) infilel, infile2
format (/,'THIS PROGRAM COMPUTES THE MINIMUM VARIANCE
BETWEEN',A,'AND', A,'FCR THE 1ST 256x2%6 SUB-IMAGE. ')

write (6,804) tg,tl,tsum
format (/,' TOTAL DMD DIMENSIONS: q =',I4,' ,1 =',1I4,
' ,MIN AVG VAR =',F10.3)

end




Ly Y T— - - Ml Bodh ian Boe i do A aife b il SLe mits ieddh aad oan oBA io- 2ot aa. il sad Asl o Bt Aok ok At ok A A S8 w v e T — T

N 86

»n

o

) APPENDIX B

NUMERICAL VALUES ASSOCIATED WITH THE IMAGE PROCESSING PROBLEM

B.1. Non-Zero Elements of A-Matrix

P A(1, 1) = 0.216 A (1, 2) = 0.208 A (1, 3) = 0,199
it A(1, 4)= 0.192 A (1,5 = 0.18¢ A (2,1)= 0.172
. A(2, 2)= 0.179 A (2,3) = 0.172 A (2, 4) = 0.165
») A (2,5 = 0.159 A (2, 6) = 0.152 a (3, 1)= 0.142
P A (3, 2) = 0,148 a(3,3) = 0.154 A (3, 4) = 0.148
! A(3 5 = 0.142 a(3,6) = 0.136 A (3, 7) = 0.131
3 A(4, 1) = 0.120 A (4, 2)= 0.125 A (4, 3) = 0.130
. A (4, 4) =°0.136 A (4,5 = 0.130 A (4, 6)= 0.125
N A (4, 7) = 0.120 A (4, 8 = 0.115 a (5, 1) = 0.103
o A(s5,2) = 0,108 A(5,3) = 0.112 A(5,4) = 0.117
Ko A(S5, 5) = 0.122 A (5, 6)= 0.117 A (5, 7) = 0.112
N A(s5,8) = 0.108 A (5,9 = 0.103 A (6, 2)= 0.103
i A(6, 3 = 0.108 A (6, 4) = 0.112 A (6,5 = 0.117
N A(6, 6)= 0.122 A (6, 7)= 0,117 A(6, 8) = 0.112 l
h, A(6,9) = 0.108 A (6,10) = 0,103 A (7, 3)= 0.103
\ A(7,4) = 0.108 A (7,5 = 0.112 A (7,6)= 0.117
b A(7,7) = 0.122 a(7,8) = 0.117 A (7,9)= 0.112
E A (7,10) = 0.108 A ( 7,11) = 0.103 A (8, 4) = 0.103
2 A (8,5 = 0,108 a (8, 6)= 0.112 A (8,7)= 0.117
’ A(8,8) = 0,122 A (8,9 = 0,117 A (38,10) = 0.112
‘. A (8,11) = 0.108 A ( 8,12) = 0.103 A (9, 5) = 0.103
o A (9, 6) = 0,108 A (9, 7) = 0.112 A(9,8) = 0.117
o A (9, 9) = 0.122 A (9,10) = 0.117 a(9,11) = 0.112
i A (9.12) = 0.108 A ( 9,13) = 0.103 A (10, 6) = 0.103
¢ A (10, 7) = 0.108 A (10, 8) = 0.112 A (10, 9) = 0.117
) A (10,10) = 0.122 A (10,11) = 0.117 A (10,12) = O0.112
3 A (10,13) = 0.108 A (10,14) = 0.103 A (11, 7) = 0.103
e A (11, 8) = 0.108 A (11, 9) = 0.112 A (11,10) = 0.117
i A (11,11) = 0.122 A (11,12) = 0.117 A (11,13) = 0.l112
o A (11 14) = 0.108 A (1l1,15) = 0.103 A (12, 8) = 0.103
;j A (12, 9) = 0.108 A (12,10) = 0.112 A (12,11) = 0.117
A (12 12) = 0.122 A (12,13) = 0.117 A (12,14) = 0.112
Y A (12,15) = 0.108 A (12,16) = 0.103 A (13, 9) = 0.103
2 A (13,10) = 0.108 A (13,11) = 0.112 A (13,12) = 0.117
35 A (13,13) = 0.122 A (13,14) = 0.117 A (13,15) = 0.112
» A (13.16) = 0.108 A (13,17) = 0.103 A (14,10) = 0.103
e A (14,11) = 0.108 A (14,12) = 0.112 A (14,13) = 0.117
@ A (14.14) = 0.122 A (14,15) = 0.117 A (14,16) = 0.112
R A (14,17) = 0.108 A (14,18) = 0.103 A (15,11) = 0.103
>, A (15,12) = 0.108 A (15,13) = 0.112 A (15,14) = 0.117
SN A (15,15) = 0.122 A (15,16) = 0.117 A (15,17) = ©0.1l12
o) A (15,18) = 0.108 A (15,19) = 0.103 A (1l6,12) = 0.103
h{ A (16,13) = 0.108 A (16,14) = 0.112 A (16,15) = 0.117
N A (16,16) = 0.122 A (16,17) = 0.117 A (16,18) = 0.l12
4 A (16,19) = 0.108 A (16,20) = 0.103 A (17,13) = 0.103
s A (17.14) = 0.108 A (17,15) = 0.112 A (17,16) = 0.117
; A (17,17) = 0.122 A (17.18) = 0.117 A (17,19) = 0.112
A (17,20) = 0.108 A (17,21) = 0.103 A (18,14) = 0.103
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F
!! A (18,15) = 0.108 A (18,1i6) = 0.112 a (18,17) = 0.117
A (18,18) = 0.122 A (18,19) = 0.117 A (18,20) = 0.1l2
< A (18,21) = 0.108 A (18,22) = 0.103 A (19,15) = 0.103
{; A (19,16) = 0.108 A (19,17) = 0.112 A (19,18) = 0.117
A (19,19) = 0.122 A (19,20) = 0.117 A (19,21) = 0.112
o A (19,22) = 0.108 A (19,23) = 0.103 a (20,16) = 0.103
S A (20,17) = 0.108 A (20,18) = 0.112 A (20,19) = 0.117
R A (20,20) = 0.122 A (20,21) = 0.117 A (20,22) = G.112
N A (20,23) = 0.108 A (20,24) = 0.103 A (21,17) = 0.103
o A (21,18) = 0.108 A (21,19) = 0.112 A (21,20) = 0.117
o A (21,21) = 0.122 A (21,22) = 0.117 A (21,23) = 0.112
A (21,21) = 0.108 A (21,25) = 0.103 A (22,18) = 0.103
A (22,19) = 0.108 A (22,20) = 0.112 A (22,21) = 0.117
E A (22,22) = 0.122 A (22,23) = 0.117 A (22,24) = 0.112
A (22,25) = 0.108 A (22,26) = 0.103 A (23,19) = 0.103
- A (23,20) = 0.108 A (23,21) = 0.112 A (23,22) = 0.117
g A (23,23) = 0.122 A (23,24) = 0.117 A (23,25) = 0.112
* A (23,26) = 0.108 A (23,27) = 0.103 A (24,20) = 0.103
, A (24,21) = 0.108 A (24,22) = 0.112 A (24,23) = 0.117
?: A (24,24) = 0.122 A (24,25) = 0.117 A (24,26) = 0.112
o A (24,27) = 0.108 A (24,28) = 0.103 A (25,21) = 0.103
A (25,22) = 0.108 A (25,23) = 0.112 A (25,24) = 0.117
v A (25,25) = 0.122 A (25,26) = 0.117 A (25,27) = 0.112
i A (25,28) = 0.108 A (25,29) = 0.103 A (26,22) = 0.103
A (26,23) = 0.108 A (26,24) = 0.112 A (26,25) = 0.117
A (26,26) = 0.122 A (26,27) = 0.117 A (26,28) = 0.1l12
g A (26 29):= 0.108 A (26,30) = 0.103 A (27,23) = 0.103
A (27,24) = 0.108 A (27,25) = 0.112 A (27,26) = 0.117
J A (27 27) = 0.122 A (27,28) = 0.117 A (27,29) = 0.112
! A (27,30) = 0.108 A (27,31) = 0.103 A (28,24) = 0.103
) A (28,25) = 0.108 A (28,26) = 0.112 A (28,27) = 0.117
A (28,28) = 0.122 A (28,29) = 0.117 A (28,30) = 0.112
% A (28,31) = 0.108 A (28,32) = 0.103 A (29,25) = 0.115
ot A (29,26) = 0.120 A (29,27) = 0.125 A (29,28) = 0.130
A (29,29) = 0.136 A (29,30) = 0.130 A (29,31) = 0.125
, A (29,32) = 0.120 A (30,26) = 0.121 A (30,27) = 0.136
l ﬁ, A (30,28) = 0.142 A (30,29) = 0.148 A (30,30) = C.154
A (30,31) = 0.148 A (30,32) = 0.142 A (31,27) = 0.152
N A (11.28) = 0.159 A (31.,29) = 0.165 A (31,30) = OC..7
e A (31,32) = 0.179 A (31,32) = 0.172 A (32,28) = 0.18%
S A (32,29) = 0.192 A (32,30) = 0.19929 A (32,31) = ¢(.208
A (32,32) = 0.216
i
£
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